BIG PICTURE of this UNIT:	- How do we analyze and then work with a data set that shows both increase and decrease - What is a parabola and what key features do they have that makes them useful in modeling applications - How do I use graphs, data tables and algebra to analyze quadratic functions? - How can I use graphs and equations of quadratic relations to make predictions from data sets \& their models

1. (CI) Solving Quadratic Equations \Rightarrow Factoring $a x^{2}+b x+c=0$ when $a=1$
a. (i) G / C
(ii) Using Vertex form
(iii) Using symmetry
b. Examples:
i. $x^{2}+2 x-15=0$
ii. $x^{2}+4 x+4=0$
iii. $\quad x^{2}+5 x-24=0$
iv. $x^{2}-5 x=0$
v. $x^{2}-16=6 x$
vi. $x^{2}=7 x-12$
2. (CI) Solving Quadratic Equations \Rightarrow Factoring $a x^{2}+b x+c=0$ when $a \neq 1$
a. (i) G / C
(ii) Decomposition
(iii) using vertex form
(iv) Using symmetry
b. Examples:
i. $\quad 3 x^{2}-5 x-2=0$
ii. $\quad 2 x^{2}+3 x-2=0$
iii. $\quad 3 x^{2}-4 x-15=0$
iv. $\quad 6 x^{2}-x-2=0$
v. $4 x^{2}-4 x=3$
vi. $9 x^{2}+1=6 x$
3. (CI) Solving Quadratic Equations \Rightarrow When factoring doesn't work
a. (i) using vertex form
(ii) Using symmetry
b. Examples:
i. $\quad x^{2}+5 x-2=0$
ii. $\quad 4 x^{2}-8 x+3=0$
iii. $x^{2}+1=4-2 x^{2}$
iv. $x(x+5)=2 x+7$
v. $3 x^{2}+5 x-3=x^{2}+4 x+1$
vi. $(x+3)^{2}-2 x=15$
4. (CI) Solving Systems of Equations:
a. Solve the system defined by the equations $f(x)=x^{2}-2 x-3$ and $g(x)=2 x-3$
b. Solve the system defined by the equations $f(x)=-(x+2)^{2}+5$ and $g(x)=2-6 x$
c. Solve the system defined by the equations $f(x)=x^{2}-2 x+4$ and $g(x)=x-1$
d. Solve the system defined by the equations $f(x)=-2 x^{2}-4 x-1$ and $g(x)=2 x+4$
e. Solve the system defined by the equations $f(x)=2 x^{2}-5 x+6$ and $g(x)=3 x-2$
f. Solve the system defined by the equations $f(x)=-x^{2}-3 x+2$ and $g(x)=x+6$
g. Solve the system defined by the equations $f(x)=2 x^{2}+4 x-1$ and $-5 x+y=5$
