|  | - How can we analyze growth or decay patterns in data sets \& contextual problems? |
| :--- | :--- |
| BIG PICTURE | - How can we algebraically \& graphically summarize growth or decay patterns? |
| of this UNIT: | - How can we compare \& contrast linear and exponential models? |
|  | - How can we extend basic function concepts using exponential functions? |

## Part 1 - Skills/Concepts Review

1. (CI) Mr D makes the following observation about exponents and exponent rules:
(i) $4^{1} \times 4^{1}=4^{2}$
(ii) $4^{2} \times 4^{2}=4^{4}$
(iii) $4^{3} \times 4^{3}=4^{6}$

So he wonders what would happen in the following situation: $4^{\#} \times 4^{\#}=4^{1}$
a. What value does \# have?
b. What does 4 \# equal?
2. (CI) Mr D makes the following observation about exponents and exponent rules:
(i) $8^{1} \times 8^{1} \times 8^{1}=8^{3}$
(ii) $8^{2} \times 8^{2} \times 8^{2}=8^{6}$
(iii) $8^{3} \times 8^{3} \times 8^{3}=8^{9}$

So he wonders what would happen in the following situation: $8^{\#} \times 8^{\#} \times 8^{\#}=8^{1}$
a. What value does \# have?
b. What does $8^{\#}$ equal?
3. (CI) Simplify the following expressions using the appropriate exponent laws and operations.
a. $\frac{\left(6 x^{3} y^{-4}\right)^{-2}}{\left(3 x^{2} y^{5}\right)^{-3}}$
b. $\frac{\left(8 x^{3} y^{-4}\right)^{-2}}{\left(-4 x^{-1} y^{2}\right)^{-3} \cdot\left(2 x^{5} y^{-3}\right)^{-2}}$
c. $\frac{x^{-1}+y^{-1}}{(x y)^{-2}}$
4. (CA) A tool \& die business purchased a piece of equipment of $\$ 250,000$. The value of the equipment depreciates at a rate of $12 \%$ each year.
a. Write an exponential decay model for the value of equipment.
b. What is the value of equipment after 5 years?
c. Estimate when the equipment will have a value of $\$ 70,000$
d. What is the monthly rate of depreciation
5. (CI) Evaluate the following expressions:
a. (i) $8^{-\frac{2}{3}}$
(ii) $25^{-\frac{3}{2}}$
(iii) $16^{-\frac{5}{4}}$
(iv) $81^{-\frac{3}{4}}$
b. (i) $3^{\frac{4}{3}} \times 3^{\frac{5}{3}}$
(ii) $\left(7^{3}\right)^{\frac{2}{3}}$
(iii) $8^{-\frac{5}{3}} \times 8^{\frac{6}{3}}$

## Part 2-Skills/Concepts Application Problems

6. (CA) The half-life of a medication is the amount of time for half of the drug to be eliminated from the body. The half-life of Advil or ibuprofen is represented by the equation $R(t)=M\left(\frac{1}{2}\right)^{\frac{t}{2}}$, where $R$ is the amount of Advil remaining in the body, $M$ is the initial dosage, and $t$ is time in hours since a dose was taken.
a. How much Advil is left after 2 hours? Hence, what is the half life of Advil?
b. A 200 milligram dosage of Advil is taken at 11:00 am. How many milligrams of the medication will remain in the body at $5: 00 \mathrm{pm}$ ?
c. Mr R is taking an Advil every 12 hours and he takes a 200 milligram dosage of Advil at 11:00 am, how many milligrams of the medication will remain in the body 12 hours later.
d. He then takes another dose at $11: 00 \mathrm{pm}$, how many milligrams of the medication will be in his body at that time?
7. (CI) Given the function $g(x)=16-2^{x+2}$ :
a. evaluate $g(-3), g(-2), g(-1), g(0), g(1), g(2)$
b. determine the $x$ - and $y$-intercept(s), if they exist
c. determine the equation of the asymptote of $g(x)$
d. sketch $g(x)$, labelling the data points and intercept(s) and the asymptote.
8. (CA) In 1990 the cost of attending University of Math was $\$ 15000$. During the next 25 years, the cost has increased by an average of $5.2 \%$ per year.
a. Write a model giving the cost, $C(t)$, at University of Math $t$ years after 1990.
b. In what year did the tuition exceed $\$ 30,000$ ?
c. Estimate the tuition in 2020 - the year you will attend this college!
d. Mr S has set up a college fund for his son Ian. This fund started in 2000 with an initial investment of \$30,000 and has grown at $5.8 \%$ every year. If Ian attends a three year program at $U$ of Math, can this college fund pay for these costs? Show your work/reasoning.
9. (CI) Solve the following equations and verify your solutions.
a. (i) $2^{3-x}=2^{4}$
(ii) $2^{x-3}=2^{3 x+1}$
(iii) $2^{2 x+3}=16$
b. (i) $2^{1-2 x}=8$
(ii) $3^{x+2}=\frac{1}{9}$
(iii) $8^{x}=16^{x-1}$
10. (CA) Analysis of a Data Set. Mr S. gives you this data set and is asking you to analyze patterns in the data set in order to determine an equation in the form of $f(x)=a b^{x}$.

| $x$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 28.1 | 21.2 | 16.1 | 11.9 | 9.1 | 6.6 | 5.0 |

a. Determine the "percent change" between each pair of terms:
$\%$ change $=\frac{y(3)-y(2)}{y(2)} ; \quad \%$ change $=\frac{y(4)-y(3)}{y(3)} ; \quad \%$ change $=\frac{y(5)-y(4)}{y(4)} ;$ etc $\ldots$
b. This creates an equation in the form of $y=a(1+r)^{x}$. Use a data point to find the value of $a$ and now, what equation models this data set?
c. Secondly, now determine the "common ratio" between each pair of terms (you do this by dividing the successive $y$ terms $=\Rightarrow$ ratio $=\frac{y(3)}{y(2)} ;$ ratio $=\frac{y(4)}{y(3)} ; r=\frac{y(5)}{y(4)} ;$ etc $\ldots .$.
d. Finally, enter the data set into the lists $\mathrm{L}_{1}$ and L 2 in your calculator and use the TI- 84 to determine the equation of the exponential function that models this data set.
e. Finally, what is the equation for this data set?
11. (CI) For each of the functions, state their domain and range and the equation of the asymptote. Sketch each function, labeling the $y$-intercept, the $x$-intercept (if they exist) $t$, the asymptote.
a. First, graph the function $g(x)=2^{x}$.
b. Then, graph each of the following functions (that are somehow related to $g(x)$ )
i. $\quad g(x)=2^{x}-3$
ii. $g(x)=2^{x-3}$
iii. $g(x)=-2^{x}+3$
iv. $g(x)=2^{-x}+4$

