	- How can we analyze growth or decay patterns in data sets \& contextual problems?
BIG PICTURE	- How can we algebraically \& graphically summarize growth or decay patterns?
of this UNIT:	- How can we compare \& contrast linear and exponential models?
	- How can we extend basic function concepts using exponential functions?

Part 1 - Skills/Concepts Review

1. (CI) Which of the functions listed below are "growth" functions and which are "decay" functions? For each function, determine the growth/decay factor as well as the growth/decay rate.
a. $y=5(2)^{x}$
b. $y=100(0.5)^{x}$
c. $y=80(1.3)^{x}$
d. $y=20(0.8)^{x}$
2. (CA) Use your calculator to work through the following questions:
a. Find the value of
(ii) $16^{\frac{1}{2}}$
(iii) $36^{\frac{1}{2}}$
(iv) $225^{\frac{1}{2}}$
(v) $900^{\frac{1}{2}}$
b. Explain your values and explain what the exponent of $1 / 2$ means
c. Find the value of: (i) $8^{\frac{1}{3}}$
(ii) $27^{\frac{1}{3}}$
(iii) $125^{\frac{1}{3}}$
(iv) $343^{\frac{1}{3}}$
(v) $1000^{\frac{1}{3}}$
d. Explain your values and explain what the exponent of $1 / 3$ means
e. What would the exponents $1 / 4$ and $1 / 5$ then mean?
3. (CI/CA) Solve the following equations using "inverse operations":
a. $3 x+3=11$
b. $\frac{x}{3}+3=11$
c. $x^{2}+3=11$
d. $x^{3}+3=11$
e. $3^{x}+3=11$

Part 2 - Skills/Concepts Application Problems

4. (CA) Use your calculator to evaluate the following expressions and then summarize what is happening:
a. (i) $8^{\frac{1}{3}}$
(ii) $8^{\frac{2}{3}}$
(iii) $8^{\frac{4}{3}}$
(iv) $8^{\frac{5}{3}}$
b. (i) $4^{\frac{1}{2}}$
(ii) $4^{\frac{3}{2}}$
(iii) $4^{\frac{5}{2}}$
(iv) $4^{\frac{7}{2}}$
c. (i) $16^{\frac{1}{4}}$
(ii) $16^{\frac{3}{4}}$
(iii) $16^{\frac{5}{4}}$
(iv) $16^{\frac{7}{4}}$
d. Explain how to work through a question wherein you are asked to evaluate $A^{\frac{b}{c}}$

5. (CA - DESMOS) Investigation \#1

a. Use DESMOS to graph $\mathrm{y}=2^{x}$.
b. Then graph $y=b^{x}$ and add a slider for b. Set the slider for b for $1 \leq b \leq 10$
c. Play the slider and record observations and describe the effect of " b " on the exponential function.
d. What is changing about the exponential function \Rightarrow its shape or its location?

6. (CA - DESMOS) Investigation \#2

a. Use DESMOS to graph $\mathrm{y}=2^{x}$.
b. Then graph $y=b^{x}$ and add slider. Set the slider for b for $0 \leq b \leq 1$
c. Play the slider and record observations and describe the effect of " b " on the exponential function. How is this different that Investigation \#1?
d. What is changing about the exponential function \Rightarrow its shape or its location?
7. (CA) Mr S has been given a new job contract. He will earn $\$ 50,000$ in the first year of this contract and get a raise of 6% of his previous years' salary (i.e his salary grows by 6% per year).
a. Write an equation for Mr. S's salary.
b. Graph the function on your TI-84.
c. What does the y-intercept represent?
d. What would my salary be in 8 years?
e. After how many years would my salary be $\$ 80,000$?
f. What assumption are you making as you answer questions d and e ?
8. (CA) Ratio Analysis of a Data Set. Mr S. gives you this data set and is asking you to analyze patterns in the data set in order to determine an equation in the form of $f(x)=a b^{x}$ for the data set.

x	2	3	4	5	6	7	8
$f(x)$	6.6	7.6	8.7	10.1	11.6	13.3	15.3

a. Determine the "common ratio" between each pair of terms (you do this by dividing the successive y terms $=\Rightarrow$ ratio $=\frac{y_{2}}{y_{1}} ;$ ratio $=\frac{y_{3}}{y_{2}} ; r=\frac{y_{4}}{y_{3}} ;$ etc \ldots.
b. This value for the common ratio is the base or b in the equation. How can you use the data set to find the value for a ?
c. Finally, what is the equation for this data set?
9. (CA) On January $1^{\text {st }}, 2000$, Mr S made a deposit of $\$ 15,000$ in an account pays annual interest of 7.25% on the balance annually and the account balance is modeled by $B(t)=15,000(1.0725)^{t}$, where t is time in years since January $1^{\text {st }}, 2000$.
a. From the equation, how do you know that the model represents a growth curve?
b. At what rate is the deposit growing?
c. What was the value of the deposit on Jan $1^{\text {st }}, 2019$?
d. What is the value of the deposit now?
e. In what year will the value of the investment exceed $\$ 80,000$?
10. (CA) Mr R has purchased a new car. It cost $\$ 50,000$ but its value is depreciating at an annual rate of 12% of the previous year's value.
a. Write an equation for the value of Mr. R's car.
b. Graph the function on your TI-84.
c. What does the y-intercept represent?
d. What is the value of his car in 8 years? What assumption are you making?
e. After how many years would the value of his car be $\$ 10,000$? What assumption are you making?
11. (CI) Determine the intersection point of the following functions using algebraic methods. Now, verify your solutions by graphing on your TI-84.
a. $2 x-5 y=12$ and $-4 x+y=12$
b. $y=2^{x}$ and $y=8-3\left(2^{x}\right)$
12. (CI) Exponential functions can be written in the form of $f(x)=a b^{x}$. Write the equation of the exponential function that go through the following pairs of points:
a. $\mathrm{W}(1,12)$ and $\mathrm{X}(4,1.5)$
b. $f(-1)=-144$ and $f(2)=-\frac{9}{4}$

