BIG PICTURE of this UNIT:	 How can we analyze growth or decay patterns in data sets & contextual problems? How can we algebraically & graphically summarize growth or decay patterns? How can we compare & contrast linear and exponential models? How can we extend basic function concepts using exponential functions?
------------------------------	---

Part 1 - Skills/Concepts Review

1. (CI) Which of the functions listed below are "growth" functions and which are "decay" functions? For each function, determine the growth/decay factor as well as the growth/decay rate.

a. $y = 5(2)^x$ b. $y = 100(0.5)^x$ c. $y = 80(1.3)^x$ d. $y = 20(0.8)^x$

- 2. (CA) Use your calculator to work through the following questions:
 - a. Find the value of: (i) $9^{\frac{1}{2}}$ (ii) $16^{\frac{1}{2}}$ (iii) $36^{\frac{1}{2}}$ (iv) $225^{\frac{1}{2}}$ (v) $900^{\frac{1}{2}}$
 - b. Explain your values and explain what the exponent of $\frac{1}{2}$ means
 - eans (iv) $343^{\frac{1}{3}}$ (v) $1000^{\frac{1}{3}}$ c. Find the value of: (i) $8^{\frac{1}{3}}$ (ii) $27^{\frac{1}{3}}$ (iii) $125^{\frac{1}{3}}$
 - d. Explain your values and explain what the exponent of $\frac{1}{3}$ means
 - e. What would the exponents $\frac{1}{4}$ and $\frac{1}{5}$ then mean?
- 3. (CI/CA) Solve the following equations using "inverse operations":
 - a. 3x + 3 = 11 b. $\frac{x}{3} + 3 = 11$ c. $x^2 + 3 = 11$ d. $x^3 + 3 = 11$ e. $3^x + 3 = 11$

Part 2 - Skills/Concepts Application Problems

4. (CA) Use your calculator to evaluate the following expressions and then summarize what is happening:

a.	(i) $8^{\frac{1}{3}}$	(ii) $8^{\frac{2}{3}}$	(iii) 8 ⁴ / ₃	(iv) $8^{\frac{5}{3}}$
b.	(i) $4^{\frac{1}{2}}$	(ii) $4^{\frac{3}{2}}$	(iii) $4^{\frac{5}{2}}$	(iv) $4^{\frac{7}{2}}$
c.	(i) $16^{\frac{1}{4}}$	(ii) $16^{\frac{3}{4}}$	(iii) $16^{\frac{5}{4}}$	(iv) $16^{\frac{7}{4}}$

d. Explain how to work through a question wherein you are asked to evaluate $A^{\frac{p}{c}}$

5. (CA - DESMOS) Investigation #1

- a. Use DESMOS to graph $y = 2^x$.
- b. Then graph $y = b^x$ and add a slider for *b*. Set the slider for *b* for $1 \le b \le 10$
- c. Play the slider and record observations and describe the effect of "b" on the exponential function.
- d. What is changing about the exponential function \Rightarrow its shape or its location?

6. (CA - DESMOS) Investigation #2

- a. Use DESMOS to graph $y = 2^x$.
- b. Then graph $y = b^x$ and add slider. Set the slider for b for $0 \le b \le 1$
- c. Play the slider and record observations and describe the effect of "b" on the exponential function. How is this different that Investigation #1?
- d. What is changing about the exponential function \Rightarrow its shape or its location?
- 7. (CA) Mr S has been given a new job contract. He will earn \$50,000 in the first year of this contract and get a raise of 6% of his previous years' salary (i.e his salary grows by 6% per year).
 - a. Write an equation for Mr. S's salary.
 - b. Graph the function on your TI-84.
 - c. What does the *y*-intercept represent?
 - d. What would my salary be in 8 years?
 - e. After how many years would my salary be \$80,000?
 - f. What assumption are you making as you answer questions d and e?
- 8. (CA) Ratio Analysis of a Data Set. Mr S. gives you this data set and is asking you to analyze patterns in the data set in order to determine an equation in the form of $f(x) = ab^x$ for the data set.

x	2	3	4	5	6	7	8
f(x)	6.6	7.6	8.7	10.1	11.6	13.3	15.3

- a. Determine the "common ratio" between each pair of terms (you do this by dividing the successive y terms ==> ratio = $\frac{y_2}{y_1}$; ratio = $\frac{y_3}{y_2}$; $r = \frac{y_4}{y_3}$; etc
- b. This value for the common ratio is the *base* or *b* in the equation. How can you use the data set to find the value for *a*?
- c. Finally, what is the equation for this data set?

- 9. (CA) On January 1st, 2000, Mr S made a deposit of \$15,000 in an account pays annual interest of 7.25% on the balance annually and the account balance is modeled by $B(t) = 15,000(1.0725)^{t}$, where *t* is time in years since January 1st, 2000.
 - a. From the equation, how do you know that the model represents a growth curve?
 - b. At what rate is the deposit growing?
 - c. What was the value of the deposit on Jan 1st, 2019?
 - d. What is the value of the deposit now?
 - e. In what year will the value of the investment exceed \$80,000?
- 10. (CA) Mr R has purchased a new car. It cost \$50,000 but its value is depreciating at an annual rate of 12% of the previous year's value.
 - a. Write an equation for the value of Mr. R's car.
 - b. Graph the function on your TI-84.
 - c. What does the *y*-intercept represent?
 - d. What is the value of his car in 8 years? What assumption are you making?
 - e. After how many years would the value of his car be \$10,000? What assumption are you making?
- 11. (CI) Determine the intersection point of the following functions using algebraic methods. Now, verify your solutions by graphing on your TI-84.
 - a. 2x 5y = 12 and -4x + y = 12
 - b. $y = 2^x$ and $y = 8 3(2^x)$
- 12. (CI) Exponential functions can be written in the form of $f(x) = ab^x$. Write the equation of the exponential function that go through the following pairs of points:
 - a. W(1, 12) and X(4, 1.5) b. f(-1) = -144 and $f(2) = -\frac{9}{4}$