	• How do we analyze and then make conclusions from a data set? Or from a
BIG PICTURE of	scenario in which probabilities are being considered?
this UNIT:	• How do I visually present my data and the outcomes of my analysis? How can we
	visualize events and outcomes when considering probability events?
	• How do I use data & statistics & probabilities to make decisions?
	• How do I decide on the validity/reliability of my data? Of my analysis? Of my
	conclusions? Of my decision?

- 1. Find the mean, median and mode of these data set:
 - a. 7,13,18,24,3,9,18
 - b. 24,15,18,20,18,22,24,26,18,26,24
- 2. The average weight of 11 players on a basketball team is 80.3 kg. A new player joins the team and the average weight on the team goes up to 81.2 kg. Find the weight of the new player.
- 3. Jennifer asked 80 people which sports they enjoy from Football, Hockey and Rugby.
 - a. How many people enjoy all three sports?
 - b. How many people enjoy football and hockey but not rugby?
 - c. How many people enjoy football and rugby but not hockey?
 - d. Which sport is enjoyed by the most number of people?
 - e. How probable is it that a randomly selected person enjoys rugby and hockey but not football?
 - f. Determine P(Football).
- 4. The chart to the right represents the distribution of salaries at a local company.
 - a. Calculate the median and modal salary interval.
 - b. Calculate the mean salary.
 - c. Prepare a frequency histogram of the salaries.
 - d. Hence, prepare a frequency polygon of the salaries.
 - e. How probable is it that a randomly selected employee makes more than \$30,000?

Salary (S)	Number of Employees
18 000-20 999	4
21 000-23 999	16
24 000-26 999	14
27 000-29 999	7
30 000-32 999	3
33 000-35 999	0
36 000-38 999	0
39 000-41 999	0
42 000-44 999	2
45 000-47 999	0
48 000-50 999	1

5. Compare the following 2 classes:

Central Tendencies: Results Summary from Class A	Central Tendencies: Results Summary from Class B	
- Mean grade $\Rightarrow 63\%$ - Median grade $\Rightarrow 60\%$ - Modal Grade $\Rightarrow 60\%$, 63%	 Mean grade ⇒ 63% Median grade ⇒ 60% Modal Grade ⇒ 60% 	
Can we determine which class did "better" if all we know are the central tendencies?		

How about now?

Central Tendencies:	Central Tendencies:
Results Summary from Class A	Results Summary from Class B
- Mean grade $\Rightarrow 63\%$	- Mean grade $\Rightarrow 63\%$
- Median grade $\Rightarrow 60\%$	- Median grade $\Rightarrow 60\%$
- Modal Grade $\Rightarrow 60\%$, 63%	- Modal Grade $\Rightarrow 60\%$
- Range $\Rightarrow 70\%$	- Range $\Rightarrow 40\%$

Can we determine which class did "better" after we have now added the range to the central tendencies?

6. <u>Class Example #1 – Analyzing Quiz Scores ⇒ 5 Number Summary</u>

Here are QUIZ results from BOYS in our IM2
classes. The scores have already been
sorted/ordered.

3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10

- (a) Determine the minimum score
- (b) Determine the maximum score
- (c) Calculate the range of the scores
- (d) Determine the lower quartile score
- (e) Determine the median score
- (f) Determine the upper quartile score

Here are QUIZ results from GIRLS in our IM2 classes. The scores have already been sorted/ordered.

4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10

- (a) Determine the minimum score
- (b) Determine the maximum score
- (c) Calculate the range of the scores
- (d) Determine the lower quartile score
- (e) Determine the median score
- (f) Determine the upper quartile score

What observations & conclusions can we make from looking at the results of the data calculations?

- 7. The following data give the lengths in centimetres of 25 red finned trout living in Lake Eildon in Victoria.
 - a. Determine the mean, median and mode.
 - b. Is the data set skewed?
 - c. How probable is it that a fish in the lake has a length:
 - i. Between 21 cm and 22 cm?
 - ii. Between 18 cm and 21 cm?
 - iii. Estimate the length of a fish whose length is in the lower quartile.

8. Here are two histograms showing the number of spectators at CAC sporting events; Histogram A shows student attendance at football matches and Histogram B shows attendance at volleyball matches.

- a. Which distribution had collected more data? Show/explain your reasoning.
- b. Which distribution has a larger range? Show or explain your reasoning.
- c. Determine the average number of students attending football matches and the average number of students attending volleyball matches.
- d. Which distribution is more likely to have a shape described as "skewed right?"
- e. Which distribution is more likely to have a higher median than mean? Explain why this would happen.
- 9. Use the **cumulative frequency table** below to answer the following questions about Mr Clauzet's French class.
 - a. How many students are in the class?
 - b. How many students received a test score between a 70 79?
 - c. How many students received a test score between a 60 69?
 - d. Prepare a frequency histogram of the data set.

Scores on a French les	
Interval	Cumulative Frequency
50-99	30
50-89	24
50-79	12
50-69	12
50-59	2

10. A football team has a 70% chance of winning when it does not snow, but only a 40% chance of winning when it does snow. Suppose there is a 50% chance of snow. Complete this tree diagram to find the probability that the team will win.

- 11. Here are some simple coin tossing probability questions. Determine how probable it is that you:
 - a. toss heads on one flip of a coin.
 - b. toss heads or tails on one flip of a coin.
 - c. toss 3 heads on three flips of a coin.
 - d. toss 2 heads on three flips of a coin.
 - e. toss at least 2 heads on three flips of a coin.
- 12. In a class of 24 students 12 students play the piano, 13 students play the guitar and 4 students play neither instrument.
 - a. Represent this information on a Venn diagram.
 - b. A student is selected at random. Work out the probability that the student only plays the guitar.
- 13. This summary data has been collected on times taken, in minutes, to run 5 km in two different fun runs in Victoria Park.
 - a. Draw box plots for both runs using the same scale
 - b. Write down two comparisons between the races
 - c. Emma says that Race 1 attracted more serious runners. Use your box plots to comment on what Emma has said

Run 1		
Median	35	
Minimum	23	
Range	40	
Interquartile range	12	
Upper Quartile	42	

Run 2		
Median	36	
Maximum	55	
Range	30	
Interquartile range	15	
Lower Quartile	29	

Odd Dice

Age 14 to 16 Short ★

Three fair, six-sided dice are numbered as follows:

A: 1, 1, 1, 2, 2, 2 B: 3, 3, 4, 4, 5, 5 C: 6, 7, 7, 8, 8, 8

The three dice are rolled once. What is the probability that the sum obtained is an odd number?

15. Draw a Venn diagram showing the two events A and B. Shade the following regions

1) $A \cap B'$	2) $A' \cap B'$
3) <i>A'</i> ∪ <i>B</i>	4) $A \cup B'$
5) $(A \cap B)'$	6) $(A \cap B')'$
7) $(A' \cup B)'$	8) $(A \cup B')'$
9) A' ∪ B'	

\\

https://nrich.maths.org/13889