BIG PICTURE of this UNIT:	- mastery with linear algebraic skills to be used in our work with coordinate geometry (midpoint, length, slope) - understanding various geometric properties of quadrilaterals, triangles \& circles - how do you really "prove" that something is "true"? - introduction to working with 3D shapes

Part 1 - Skills Review

1. Solve the equation $5^{2}+y^{2}=13^{2}$ for y.
2. Find the distance between the points $\mathrm{A}(5,-4)$ and $\mathrm{B}(-3,-8)$ and find the midpoint of this line segment.
3. Find the area and perimeter of a rectangle whose dimensions are 52 m by 39 m . No calculators.
4. Evaluate $4^{2}+3^{-1}+2^{0}$.

Part 2 - Concept EXPLORATION

1. Given the circle with the equation of $x^{2}+y^{2}=25$. Using GEOGEBRA, perform the following:
a. Use the INPUT bar to write the equation.
b. Determine the radius.
c. Determine the x - and y-intercepts of the circle.
d. If $x=3$, determine the value(s) for y.
e. If $y=-1.5$, determine the value(s) for x.
f. State the domain of this relation.
2. Use GEOGEBRA to work through the following question:
a. Use Geogebra to plot the point $(0,0)$ as well as the point $(-6,8)$
b. Go to the CIRCLE tool in Geogebra and CONSTRUCT the circle whose center is at $(0,0)$ and where one point is $(-6,8)$.
c. Write down the equation of the circle.
d. Determine the radius of this circle. How is the radius related to the equation of the circle?
e. Determine the x - and y-intercepts of the circle.
f. If $x=8$, determine the value(s) for y.
g. If $y=-3$, determine the value(s) for x.
3. Given a circle with its center at $(0,0)$ and containing point $(-5,12)$, determine its equation.
4. Given a circle with the endpoints of a diameter at $(-8,15)$ and $(8,-15)$, determine its equation.

PART 3 - Skills PRACTICE/Applications \& GEOMETRY Contexts

1. Given the circle with the equation of $x^{2}+y^{2}=36$. Using ALGEBRA, determine: (you may VERIFY using Geogebra).
a. Determine the length of the radius of this circle
b. Determine the domain and range of this relation.
c. Determine the x - and y-intercepts of the circle
d. If $x=-3$, determine the value(s) for y
e. If $y=2$, determine the value(s) for x
2. A circle has its center at $(0,0)$ and passes through the point $P(7,-24)$.
a. Determine the equation of this circle.
b. Determine the coordinates of the other endpoint of the diameter that passes through point P .
c. The entire circle is now moved 3 units to the right and 3 units up.
i. Where is its center now?
ii. What is the radius of this circle?
iii. What is the equation of this new circle?
iv. Where are the x - and y-intercepts of this new circle?
3. The points $(a, 5)$ and $(9, b)$ are on the circle $x^{2}+y^{2}=125$. Determine the possible values of a and b. Round to one decimal place if necessary.
4. A rock is dropped into a pond, creating a circular ripple. The radius of the ripple increases steadily at 6 $\mathrm{cm} / \mathrm{sec}$. A toy boat is floating on the pond, 2.00 m east and 1.00 m north of the spot where the rock was dropped. How long does it take the ripple to reach the boat?
5. A satellite orbits the Earth on a path modeled by the relation $x^{2}+y^{2}=45000000$. A second satellite, in the same plane, is currently located at $(12504,16050)$. Explain how you would determine whether this second satellite is inside or outside of the orbit on the first satellite.

PART 4 - Skills REVIEW/EXPLORATION PART 2

Use Geogebra to construct the following pattern.

i. Start with the red square (side length of ?)
ii. Then add the first circle (to be located on the positive x-axis) (radius of ...? and a center at...?)

iii. Look at the equation of this circle. What do you notice about its equation and its center?
iv. Add the other circles \& record their equations \qquad

