BIG PICTURE of this UNIT:	- mastery with linear algebraic skills to be used in our work with coordinate geometry (midpoint, length, slope) - understanding various geometric properties of quadrilaterals, triangles \& circles - how do you really "prove" that something is "true"? - introduction to working with 3D shapes

Part 1 - Skills Review

1. Find the volume and surface area of the rectangular prism shown.
2. Expand and simplify $6(2 x-1)-3(2 x-2)$
3. Write an equation that can be used to model the following scenario: I pay 10 cents/minute for phone calls and 6 cents/text for text messages and my monthly budget is $\$ 25.00 /$ month.
4. If $f(x)=2 x-6$, then evaluate $f(2)$ as well as $f(-2)$.

Part 2 - Skills \& Concept REVIEW/EXPLORATION

1. Show that the diagonals of quadrilateral ABCD are equal in length.
2. Show that the diagonals of quadrilateral JKLM are perpendicular.
3. $\triangle \mathrm{PQR}$ has vertices at $\mathrm{P}(-2,1), \mathrm{Q}(1,5)$ and $\mathrm{R}(5,2)$. Show that the median from vertex Q is the perpendicular bisector of PR .

4. Show that the midsegments of a rhombus with vertices at $\mathrm{R}(-5,2), \mathrm{S}(-1,3), \mathrm{T}(-2,-1)$ and $\mathrm{U}(-6,-2)$ form a rectangle.

Part 3 - Skills PRACTICE/Applications \& GEOMETRY Contexts

1. Show that any mid-segment constructed from any two sides of the triangle with vertices at $\mathrm{P}(-7,9)$, $Q(9,11)$, and $S(1,-11)$ is parallel to the third side. Key Steps to be demonstrated:
a. Set up the diagram on Geogebra
b. Research unknown concepts (what is a midsegment?)
c. Use Geogebra to generate "relevant information"
d. We will use this "relevant info" to help us to plan a strategy for "showing" what we are required to show we will try to use analytical geometry in this step
e. Organize \& present a solution
2. Show that the diagonals of the quadrilateral with vertices at $A(-6,4), B(-2,6), C(1,0)$ and $D(-3,-2)$ are equal in length. Make a conjecture about the type of quadrilateral. Key Steps to be demonstrated:
a. Set up the diagram on Geogebra.
b. Use Geogebra to generate "relevant information"
c. We will use this "relevant info" to help us to plan a strategy for "showing" what we are required to show we will try to use analytical geometry in this step
d. Organize \& present a solution
3. CHALLENGE Q : Using the same triangle as before, with vertices at $\mathrm{P}(-7,9), \mathrm{Q}(9,11)$, and $\mathrm{S}(1,-11)$, use algebraic methods to determine its area. Key Steps to be demonstrated:
a. Set up the diagram on Geogebra
b. Research unknown concepts (different ways to find a triangle's area? What is an "altitude"?)
c. Use Geogebra to generate "relevant information"
d. We will use this "relevant info" to help us to plan a strategy for "showing" what we are required to show we will try to use analytical geometry in this step
e. Organize \& present a solution
