BIG PICTURE of this UNIT:	- mastery with linear algebraic skills to be used in our work with coordinate geometry (midpoint, length, slope) - understanding various geometric properties of quadrilaterals, triangles \& circles - how do you really "prove" that something is "true"? - introduction to working with 3D shapes

EXPLORATION \#1: Dynamic geometry software: Working with Geogebra

Show me an axes with a grid and that you can remove either/both the axes and the grid	5 pts
Show me that you can construct a line segment between 2 points and measure its length, slope and find its midpoint	5 pts
Show me that you can construct a line through two points \& determine the slope and equation and the angle that it would make with the x-axis	5 pts
Show me that you can construct a triangle and measure the slope of each side and measure each angle and determine the area	5 pts
Show me you can reflect a rectangle across the x-axis and across the y-axis	5 pts
Show me that you can translate a parallelogram 3 units to the left and 6 units down	5 pts
Show me that you can construct a perpendicular bisector of a side of a triangle	5 pts
Show me that you can construct an angle bisector of an angle in a triangle	5 pts
Show me that you can construct a median (as a line segment) in a triangle	5 pts
Show me how to construct an altitude of a triangle	5 pts

EXPLORATION \#2: Working with Triangles \& Quadrilaterals

Use slopes to prove that $\Delta \mathrm{ABC}$ is a right triangle, given that $\mathrm{A}(4,2), \mathrm{B}(-2,4), \mathrm{C}(2,-4)$	5 pts
Use lengths to prove that $\triangle \mathrm{ABC}$ is a right triangle, given that $\mathrm{A}(4,2), \mathrm{B}(-2,4), \mathrm{C}(2,-4)$	5 pts
A triangle is enclosed by the lines $3 x+13 y=56,5 x-8 y=34$ and $-8 x-5 y=-1$. Determine:	10 pts
(i) the coordinates of the vertices	
(ii) the type of triangle (scalene, isosceles, equilateral)	
(iii) the area of the triangle	10 pts
Construct a parallelogram, where 2 of the points MUST be ($-2,5$) and $(-6,-3)$. Then,	
(i) show me whether or not the diagonals BISECT each other	
(ii) construct the midsegments of your parallelogram. Is the new quadrilateral also a	
parallelogram?	10 pts
Show me whether or not the diagonals of a rhombus are perpendicular bisectors of each other	

EXPLORATION \#3 (EXTENSION): Triangle Centers (research required)

Perform a construction to find the INCENTER in a triangle explain/construct significance	
Perform a construction to find the CIRCUMCENTER in a triangle explain/construct significance	
Perform a construction to find the CENTROID in a triangle	
Perform a construction to find the ORTHOCENTER in a triangle	

