IM1 Problem Set 40

Task 1	Task 2	DC
Put solutions to problems from the previous Problem Set on the board	Discuss all problems and come to a consensus. Record solutions in your notebooks and present solutions.	DC

Problem Set 40

40.1	Use your knowledge of exponent rules to simplify the following expressions: 7. 8^{0} 20. 7^{-2} 32. $\frac{3 x^{2} y^{-3}}{12 x^{6} y^{3}}$ 8. $-(9 x)^{0}$ 21. $\frac{1}{x^{-5}}$ 33. $\left(2 x^{3} y^{-3}\right)^{-2}$
40.2	A basketball whose volume is $4500 \pi \mathrm{~cm}^{3}$ is packaged in a box that is in the shape of a cube. The edge length of the box is equal to the diameter of the basketball. What is the surface area and the volume of the box?
40.3	Mr. S has had two investments over the past 20 years. The value of his first investment is modeled by the equation $P(t)=50,000+3000 t$, where t represents the time in years since 2000. The value of his second investment is modeled by $A(t)=40,000(1.075)^{t}$, where t represents the years since 2000. a. Graph both equations on your calculator b. What was the value of both investments in the year 2000 ? c. What was the value of both investments in the year 2010 ? d. What will be the value of both investments in the year 2030 ? e. When will the value of both investments be the same? f. Which investment is growing faster? Explain your answer.
40.4	A box contains 4 red and 2 blue chips. A chip is drawn at random and then replaced. A second chip is then drawn at random. a. Show all the possible outcomes using a probability tree diagram. b. Calculate the probability of getting: i. at least one blue. ii. one red and one blue. iii. two of the same color.

40.5	Graph the following two exponential functions: let $y_{1}=8\left(\frac{1}{2}\right)^{x}$ and let $y_{2}=8\left(\frac{1}{2}\right)^{x}+16$. Compare the two graphs and the 2 data tables and prepare a sketch of the graph in your notes and then label (i) the y-intercept, (ii) the asymptote and (iii) three additional data points. Do both graphs have $y=8$ as a y-intercept? What is the effect of the +16 in the second equation?
40.6	Solve for x in the following diagrams:
40.7	All members of a club were asked if they eat apples (A) and if they eat bananas (B. a. How many people are in the club? b. The information was represented on a Venn Diagram A member of the club is selected at random? What is the probability that i. they eat both apples and bananas? ii. they eat only apples and only bananas? iii. they eat both apples or bananas?
40.8	A population of 800 beetles is growing each month at a rate of 5%. Hannah wants to write an equation that can be used to model the number of beetles, B, as a function of the number of months, $n \Rightarrow$ so she wants an equation for $B(n)$. a. Mathla says that the equation includes the 5%, so she writes $B(n)=500(0.05)^{n}$ b. Naimh sees the 5% and writes her equation as $B(n)=500(5)^{n}$ c. Olivia also sees the 5%, so she writes her equation as $B(n)=500(1.05)^{n}$ d. How can you determine which equation is correct? Which equation is correct and how did you determine the correct equation? e. How many beetles will there be in 8 months? f. When will there be 1600 beetles?

