IM1 Problem Set 18

Task 1	Task 2	DC
Put solutions to problems from the previous Problem Set on the board	Discuss all problems and come to a consensus. Record solutions in your notebooks and present solutions.	DC

Problem Set 18

18.1	Given the following: a. solve i.) $2 x-3(x+4)=2-(x+5)$ ii.) $\frac{4+x}{3}+4=\frac{x-6}{2}-6$ b. evaluate: i.) $-\left(\frac{4}{5}\right)^{2}+\left(-1 \frac{2}{5}\right)^{2}$ ii.) $-2 \frac{2}{3}+\left(-1 \frac{3}{4}-\frac{5}{6}\right)^{2}$
18.2	In a small village, one bus arrives a day. The probability of rain in the village is 0.3 . If it rains, the probability of a bus being late is 0.4 . If it does not rain, the probability of a bus being late is 0.15 . a. Complete the tree diagram. b. How probable is it that the bus is on time? c. How probable is it that the bus is late. d. Work out the number of days the bus will be late over a period of 80 days.
18.3	The diagram shows the plan of a field. Fencing the field costs $\$ 5$ per meter and applying fertilizer to the field costs $\$ 3$ per square metre. Work out the total cost to fence and apply fertilizer to the field.
18.4	The table below shows the weight of an alligator at various times during a feeding trial. a. Make a scatterplot of this data using your calculator. Is a linear model appropriate? Explain. b. What is the equation for the line of best fit? c. What is the slope and describe what it means in context to this data. d. Use the equation to predict the weight of this alligator at week 52.

| $\mathbf{1 8 . 5}$ | Write equations for the lines defined as follows. Use slope-intercept form as well as standard form to write
 the equations. Then graph the functions on your TI-84 calculator and find where the lines intersect. |
| :--- | :--- | :--- |
| a. The line that goes through the points A(-8,-3) and B(8,27) | |
| b. The line that has an x-intercept at (3,0) and a y-intercept at $(0,-9)$. | |

