IM1 Problem Set 14 - Daily Tasks

Task 1	Task 2	DC
Put solutions to problems from the previous Problem Set on the board	Discuss all problems and come to a consensus. Record solutions in your notebooks and present solutions.	DC

Problem Set 14

14.1	Solve the following equations: a. $\frac{2 x+3}{2}=5$ b. $\frac{3 x}{2}-1=8+x$ c. $\frac{x}{3}+\frac{2}{4}=x-1$
14.2	Evaluate the following expressions: a. $-\frac{3}{8}+1 \frac{3}{4}+\left(-\frac{5}{12}\right)\left(\frac{-8}{15}\right)$ b. $2^{2}+2^{1}+2^{0}+\left(2^{-1} \times 2^{-2}\right)$ c. $\left(\frac{15}{16}\right) \div\left(-1 \frac{1}{24}\right)$
14.3	My house in Canada was worth $\$ 250,000$ in 2002 and was worth $\$ 355,000$ in 2010. Let's assume that the value of my house has increased by a constant rate each year. a. What is the value of my house in 2018 ? In 1998? b. Write an equation that models the value of my house compared to the number of years since 2000 . c. Predict in what year the value of my house first exceeds $\$ 450,000$. d. What does the slope of the line mean in the context of this problem?
14.4	A car is traveling at a constant speed. It leaves Marsa Alam at 12:00 noon. After 3 hours, they are 350 km from home and after 5 hours, they are 130 km from their home. a. Write a linear equation to represent this distance-time relationship. b. What do the slope and the y-intercept mean in this context? c. At what time do they get home?
14.5	Determine the area and perimeter of these composite shapes.

14.6	Here is a graph showing 2 lines. Determine the equation of each line and write your final answers in slope-intercept form as well as standard form.
14.7	Memphis and Rocco collected the following data from a science experiment.
	Temperature ${ }^{\circ} \mathrm{C}$ 3 15 20 25 32 34
	Volume (mL) 3.84 4.01 4.08 4.18 4.33 4.40
	a. Graph the data. Put the temperature (in ${ }^{\circ} \mathrm{C}$) on the x-axis and the volume on the y-axis. b. Draw the line of best fit - the line that best represents the trend of your data. c. Determine the equation of your line of best fit. d. What does the y-intercept represent? e. Determine the x-intercept. What does it represent?
14.8	Jennifer is playing darts. She throws two darts aiming for a Bullseye. The probability Jennifer hits the Bullseye on her first throw is $1 / 4$. The probability she hits the Bullseye on her second throw $1 / 3$. a. Complete the tree diagram. b. Work out the probability Jennifer hits the Bullseye at least once.

