\qquad Partners \qquad
\qquad

IM1 LAB 06 - M\&M Lab (Exponential Growth and Decay)

Part I: Modeling Exponential Growth M\&M Activity

The purpose of this lab is to provide a simple model to illustrate exponential growth of cancerous cells. In our experiment, an $M \& M$ represents a cancerous cell. If the $M \& M$ lands " M " up, the cell divides into the "parent" cell and "daughter" cell. The cancerous cells divide like this uncontrollably-without end.

We will conduct up to 15 trials and record the number of "cancerous cells" on the plate.

DO NOT EAT THE M\&M's UNTIL YOU ARE DONE COLLECTING ALL DATA

Exponential Growth Procedure

1) Place $2 \mathrm{M} \& \mathrm{M}$'s in a cup/plate. This is trial number 0 .
2) Shake the cup and dump out the $M \& M$. For every $M \& M$ with the " M " showing, add another $M \& M$ and then record the new population. (Ex. If $5 \mathrm{M} \& M \mathrm{Ms}$ land face up, then you add 5 more $\mathrm{M} \& \mathrm{Ms}$)
3) Repeat step number 2 until you are done with 15 trials OR you run out of M\&Ms.

Trial \#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\# of M\&M's (\# of ce/ls)	2															

4) Graph your data (scatterplot) with the trial number on the x-axis and the number of M\&M's on the y axis.

Trial Number
5) To calculate the common ratio, we will divide the numbers of $M \& M s$ from one trial by the number of $M \& M s$ from the preceding trial using the formula below.

$$
\text { ratio }=\frac{\# \text { of MMs in Trial } 1}{\# \text { of MMs in Trial } 0}=\frac{\# \text { of MMs in Trial 2 }}{\# \text { of MMs in Trial 1 }}=\frac{\# \text { of MMs in Trial 3 }}{\# \text { of MMs in Trial } 2} \quad \text { etc... }
$$

Complete the table below.

Trial \#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ratio	X															

Calculate the average of ALL the ratios:

We can write an exponential growth function that models the data above using the formula $\mathbf{y}=\mathbf{C}(\mathbf{a})^{\mathbf{t}}$

Initial amount of M\&M’s (\# of M\&Ms you started with)

Ratio (calculated average)

Trial \# (this represents a specific phase number)
$C=$ \qquad
$a=$ \qquad (written as a decimal)
t = \# of repetitions

Fill in the variables to write your own exponential growth equation: \qquad .
6) Use your exponential growth model that you created in \#5 to predict the number of "cancerous cells" there would be in:

Trial 8 \qquad Trial 25 \qquad Trial 50 \qquad

1) Count the total number of $M \& M$ s that you have. Record this number in trial $\# 0$.
2) This time when you shake the cup and dump out the $M \& M s$, remove the $M \& M s$ with the " M " showing. Record the M\&M population.
3) Continue this process and fill in the table. You are done when you have completed 10 phases -OR- when your M\&M population gets below 4. Do NOT record 0 as the population!!!

Trial \#	0	1	2	3	4	5	6	7	8	9	10
M\&M Population											

4) Sketch the graph representing your data.

Trial Number
5) To calculate the common ratio, we will divide the numbers of $M \& M s$ from one trial by the number of $M \& M s$ from the preceding trial using the formula below.

$$
\text { ratio }=\frac{\# \text { of MMs in Trial } 1}{\# \text { of MMs in Trial } 0}=\frac{\# \text { of MMs in Trial } 2}{\# \text { of MMs in Trial 1 }}=\frac{\# \text { of MMs in Trial 3 }}{\# \text { of MMs in Trial } 2} \quad \text { etc... }
$$

Complete the table below.

Trial \#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ratio	X															

Calculate the average of ALL the ratios: \qquad

We can write an exponential decay function that models the data above using the formula $\mathbf{y}=\mathbf{C}(\mathbf{a})^{\mathbf{t}}$

Initial amount of M\&M's (\# of M\&Ms you started with)

Ratio (calculated average from above)

Trial \# (this represents a specific phase number)
$\mathrm{C}=$ \qquad
$a=$ \qquad (written as a decimal)
t = \# of repetitions

Fill in the variables to write your own exponential decay equation: \qquad .
6) Use your exponential growth model that you created in \#5 to predict the number of "cancerous cells" there would be in:

Trial 5 \qquad Trial 10 \qquad Trial 20 \qquad

