1. (T5.5,5.6, R, CI) Julie and Pat are going to the cinema. Let A be the event that Julie will arrive late and $P(A)$ is 0.2 Let B be the event that Pat will arrive late and $P(B)$ is 0.6 The two events are independent. (Oxford, 3.5 p.89)
a. Explain what "independence" means in this context.
b. Complete the tree diagram, showing this information.

c. Work out the probability that Julie and Pat will both arrive late.
d. Work out the probability that either Julie or Pat will arrive late.
e. Complete a Venn diagram, showing this information.
f. Use the formula $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ and explain what the answer means. Compare to your answer from Qd .
2. (T2.1,1.3, E, CI) Let $f(x)=(x-5)^{3}$, for $x \in R$. (Cirrito 5.4.2, p157; Cirrito 5.4.1, p148)
a. Find $f^{-1}(x)$.
b. Let g be a function so that $(f \circ g)(x)=8 x^{6}$. Find $g(x)$.
c. Expand $(x-5)^{3}$.
3. (T2.2,2.5, R, CI) For the rational function $f(x)=\frac{2 x-5}{3-4 x}$, determine: (Cirrito 5.3.5, p144)
a. The equations of the asymptotes of $y=f(x)$.
b. The equation of the inverse function, $y=f^{-1}(x)$.
4. (T3.1, N, CA) There is another way to measure angles in trigonometry. Let us examine this new method. A circle has 360°, a circle can also be said to have 2π radians. Using this information answer the following questions: (Cirrito 9.7.1, p309)
a. Convert these angles from degrees into radians:
i. 75°
ii. 240°
iii. 90°
b. Convert these angles from radians into degrees:
i. $\quad \frac{\pi}{3}$
ii. $\frac{3 \pi}{4}$
iii. π
5. (T5.1, E, CA) The following table shows the average weights $(y \mathrm{~kg})$ for given heights $(\mathrm{x} \mathrm{cm})$ in a population of men. (Oxford 10.2, p339; Oxford 10.3, p345)

Heights ($x \mathrm{~cm}$)	165	170	175	180	185
Weights ($y \mathrm{~kg}$)	67.8	70.0	72.7	75.5	77.2

a. The relationship between the variables is modelled by the regression equation $y=a x+b$.
i. Find the value of a and $b ;$
ii. Hence, estimate the weight of a man whose height is 172 cm .
b. Write down the correlation coefficient
c. Which two of the following describe the correlation between the variables:

Strong	Zero	Negative
Positive	No Correlation	Weak

6. (T2.3,2.4, E, CA) Consider the function $f(x)=x^{2}-4 x+1$. (Cirrito 2.4.2, p44)
a. Sketch the graph of f, for $-1 \leq x \leq 5$.
b. This function can also be written as $f(x)=(x-p)^{2}-3$. Write down the value of p.
c. The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a Vertical translation by six units. Show that $g(x)=-x^{2}+4 x+5$.
d. The graphs of f and g intersect at two points. Write down the x-coordinates of these two points.
e. A linear function, $h(x)=m x-4$ is drawn on the same grid as $y=f(x)$. Find all possible values of m such that the line $h(x)$ and the quadratic function do not intersect.
7. (T2.8, E, CA) You are given two ships, Ship A and Ship B. At noon, Ship A was 15 km due north of ship B. Ship A was moving south at $15 \mathrm{~km} / \mathrm{h}$ and ship B was moving east at $11 \mathrm{~km} / \mathrm{h}$.
(Cirrito 3.1.2, p65)
a. Find the distance between the ships at
i.) 13:00;
ii.) 14:00.
b. Let $s(t)$ be the distance between the ships t hours after noon, for $0 \leq t \leq 4$. Show that $s(t)=\sqrt{346 t^{2}-450 t+225}$.
c. Sketch the graph of $s(t)$.
d. Due to poor weather, the captain of ship A can only see another ship if they are less than 8 km apart. Can the captain see ship B at anytime between noon and 16:00? Justify your response.
