- (T4.2, N, CA) Grecko's Coffee stand kept track of how many Vanilla Freezes they sold each day for a month. The results are as follows: 28, 27, 27, 29, 27, 26, 26, 28, 28, 32, 26, 26, 27, 28, 30, 32, 31, 28, 28, 27, 32, 31, 30, 33, 31, 27, 25, 26, 25. (Oxford, 8.1 p.256)
 - a. Is this data discrete or continuous?
 - b. Draw a histogram displaying the results of this data.
 - c. Draw a box and whisker plot for the data set.
- 2. **(T2.6, R, CI)** Given the quadratic equation $f(x) = 2(x+1)^2 8$; (Oxford, 2.1 p.34)
 - a. Find the inverse of f(x) (that is, find $f^{-1}(x)$).
 - b. Rewrite f(x) in standard form.
 - c. Hence, determine the discriminant of f(x). Explain what this number means about f(x).
 - d. Solve the equation f(x) = 0.
 - e. On what interval is the function f(x) increasing?
- 3. **(T3.2, E, CA)** Given a triangle ΔDEF , with angle $D = 60^{\circ}$, side e = 9 and side f = 12. Solve ΔDEF and finds its area. *(Oxford, 11.6 p.389)*
- 4. **(T4.6, R, Cl)** Students in Mr. Webb's class were sent a survey asking whether they like or dislike certain snacks. The results are pictured below. *(Oxford, 3.2 p.68)*
 - a. How many students responded to the survey?
 - b. How many students like M&M's and peanuts?
 - c. What is the probability that a randomly selected student likes only ice cream?
 - d. What is the probability that a randomly selected student likes all three snacks, given that her or she likes peanuts?
 - e. What is the probability that a randomly selected student likes <u>only</u> M&M's, given that he or she does NOT like ice cream?

- 5. **(T2.8, R, CA)** Given the function $f(x) = 2 + \frac{1}{2x-5}$, *(Oxford, 5.3, p.147)*
 - a. Write down the equation of each of the asymptotes,
 - b. Determine the value of each of the intercepts,
 - c. Sketch the curve of f for $-3 \le x \le 5$, showing the asymptotes and intercepts.
- 6. (T.2.9, R, CI) Solve these equations for x. (Oxford, 4.3 p.109)

i.
$$2^x = 32$$
 ii. $3^{1-2x} = 243$ iii. $3^{x^2-2x} = 27$ iv. $5^{2x-1} - 25 = 0$ v. $7^{1-x} = \frac{1}{49}$

- 7. **(T2.6, R. CA)** A farmer wants to build a rectangular pasture for his sheep. He has exactly 100 meters of fencing. *(Oxford, 2.5 p.53)*
 - a. If the garden is x meters wide, find the length and the area of the garden in terms of x. Find the width of a garden with an area of 525 m^2 .
 - b. Find the dimensions of the configuration with the maximum possible area.