1. (T4.2, N, CA) Grecko's Coffee stand kept track of how many Vanilla Freezes they sold each day for a month. The results are as follows: $28,27,27,27,29,27,26,26,28,28,32,26,26,27,28,30,32,31$, $28,28,27,32,31,30,33,31,27,25,26,25$. (Oxford, 8.1 p.256)
a. Is this data discrete or continuous?
b. Draw a histogram displaying the results of this data.
c. Draw a box and whisker plot for the data set.
2. ($\mathbf{T} 2.6, \mathbf{R}, \mathbf{C l}$) Given the quadratic equation $f(x)=2(x+1)^{2}-8$; (Oxford, 2.1 p.34)
a. Find the inverse of $f(x)$ (that is, find $\left.f^{-1}(x)\right)$.
b. Rewrite $f(x)$ in standard form.
c. Hence, determine the discriminant of $f(x)$. Explain what this number means about $f(x)$.
d. Solve the equation $f(x)=0$.
e. On what interval is the function $f(x)$ increasing?
3. (T3.2, E, CA) Given a triangle $\triangle D E F$, with angle $D=60^{\circ}$, side $e=9$ and side $f=12$. Solve $\triangle D E F$ and finds its area. (Oxford, 11.6 p.389)
4. (T4.6, R, CI) Students in Mr. Webb's class were sent a survey asking whether they like or dislike certain snacks. The results are pictured below. (Oxford, 3.2 p.68)
a. How many students responded to the survey?
b. How many students like M\&M's and peanuts?
c. What is the probability that a randomly selected student likes only ice cream?
d. What is the probability that a randomly selected student likes all three snacks, given that her or she likes peanuts?
e. What is the probability that a randomly selected student likes only M\&M's, given that he or she does NOT like ice cream?

5. (T2.8, R, CA) Given the function $f(x)=2+\frac{1}{2 x-5}$, (Oxford, 5.3, p.147)
a. Write down the equation of each of the asymptotes,
b. Determine the value of each of the intercepts,
c. Sketch the curve of f for $-3 \leq x \leq 5$, showing the asymptotes and intercepts.
6. (T.2.9, R, CI) Solve these equations for x . (Oxford, 4.3 p.109)
i. $2^{x}=32$
ii. $3^{1-2 x}=243$
iii. $3^{x^{2}-2 x}=27$
iv. $5^{2 x-1}-25=0$
v. $7^{1-x}=\frac{1}{49}$
7. (T2.6, R. CA) A farmer wants to build a rectangular pasture for his sheep. He has exactly 100 meters of fencing. (Oxford, 2.5 p.53)
a. If the garden is x meters wide, find the length and the area of the garden in terms of x. Find the width of a garden with an area of $525 \mathrm{~m}^{2}$.
b. Find the dimensions of the configuration with the maximum possible area.
