1. Differentiate the following:
a. $\quad f(x)=\frac{2 x^{2}-k}{c+x^{3}}$ where c and k are constants
b. $y=\frac{2(2-\sin x)}{\cos x}$
c. $g(x)=\left(7+x^{3}\right)^{5}$
d. $y=\ln \left(\frac{1+e^{x}}{1-e^{x}}\right)$
e. $h(x)=\sin \left(e^{\cos x}\right)$
f. $g(t)=\sqrt{\frac{t}{t-2}}$
g. $p(x)=\mathrm{e}^{2 x} \cos (x)$
2. Find the first and second derivatives of $f(t)=e^{t} \sin \left(t^{2}\right)$.
3. Find the equation of the tangent to the curve $y(x)=x^{2} \ln (x)$ at the point where $x=e$.
4. If $g(x)=\sin 2 x-\cos 4 x$, find $g^{\prime}\left(\frac{\pi}{4}\right)$ and explain what your value means.
5. Find the extrema of $h(x)=3 x^{2} e^{x}$ and then use the second derivative to classify the extrema.
6.

y $1=$
If f and g are differentiable functions such that $f(2)=3, \quad f^{\prime}(2)=-1, \quad f^{\prime}(3)=7, \quad g(2)=-5$ and $g^{\prime}(2)=2$, find the numbers indicated in problems 43-48.
43. $(g-f)^{\prime}(2)$
44. $(f g)^{\prime}(2)$
45. $\left(\frac{f}{g}\right)^{\prime}(2)$
46. $(5 f+3 g)^{\prime}(2)$
47. $(f \circ f)^{\prime}(2)$
48. $\left(\frac{f}{f+g}\right)^{\prime}$
7. (CI) The spread of a virus at school is modeled by the equation $P(t)=\frac{200}{1+e^{5-t}}$, where $P(t)$ is total number of students infected t days after the virus first started to spread.
a. To predict $\lim _{t \rightarrow \infty} P(t)$, estimate the value of $\mathrm{P}(100)$. Explain what this means about the graph and about the spread of the virus.
b. Estimate the initial number of students infected with the virus.
c. Evaluate $P(5)$.
d. How fast will the virus spread after 4 days?
e. When will the virus spread at its maximum rate?

