9 1 -

1. Differentiate the following:

a.
$$f(x) = \frac{2x^2 - k}{c + x^3}$$
 where *c* and *k* are constants
b. $y = \frac{2(2 - \sin x)}{\cos x}$
c. $g(x) = (7 + x^3)^5$
d. $y = ln(\frac{1 + e^x}{1 - e^x})$
e. $h(x) = sin(e^{\cos x})$
f. $g(t) = \sqrt{\frac{t}{t-2}}$
g. $p(x) = e^{2x} \cos(x)$

- 2. Find the first and second derivatives of $f(t) = e^t sin(t^2)$.
- 3. Find the equation of the tangent to the curve $y(x) = x^2 \ln(x)$ at the point where x = e.
- 4. If $g(x) = \sin 2x \cos 4x$, find $g'\left(\frac{\pi}{4}\right)$ and explain what your value means.
- 5. Find the extrema of $h(x) = 3x^2e^x$ and then use the second derivative to classify the extrema.

6.

If f and g are differentiable functions such that f(2) = 3, f'(2) = -1, f'(3) = 7, g(2) = -5 and g'(2) = 2, find the numbers indicated in problems 43 - 48.

43.
$$(g - f)'(2)$$
 44. $(fg)'(2)$
 45. $\left(\frac{f}{g}\right)'(2)$

 46. $(5f + 3g)'(2)$
 47. $(f \circ f)'(2)$
 48. $\left(\frac{f}{f + g}\right)'(2)$

- 7. (CI) The spread of a virus at school is modeled by the equation $P(t) = \frac{200}{1+e^{3-t}}$, where P(t) is total number of students infected t days after the virus first started to spread.
 - a. To predict $\lim_{t \to \infty} P(t)$, estimate the value of P(100). Explain what this means about the graph and about the spread of the virus.
 - b. Estimate the initial number of students infected with the virus.
 - c. Evaluate P(5).
 - d. How fast will the virus spread after 4 days?
 - e. When will the virus spread at its maximum rate?