1. Use the Quotient Rule to determine the equation of the derivatives of the following functions:
a. $y=\frac{e^{x}}{1-e^{2 x}}$
b. $y=\ln \left(\frac{x+1}{x-1}\right)$
c. $y=\frac{1+\ln (x)}{x}$
d. $y=\frac{\sin x}{1+\cos x}$

Here are some videos if you need more explained examples
https://www.youtube.com/watch?v=wg2O3o4s1q0
https://www.youtube.com/watch?v=Inq4V8Vogxc
2. Find the equations of the tangents to the curve $y=\frac{4 x}{x^{2}+1}$ at the points where $x=0$ and $x=1$.
3. Find the equation of the second derivative of the following functions:
a. $y=\frac{1}{x+1}$
b. $y=\frac{\cos (4 x)}{e^{x}}$
c. $y=\frac{x^{2}}{x^{2}+1}$
4. Given the function $g(x)=\frac{e^{x}}{x}, x \neq 0$;
a. Predict what is happening on the graph at $x=0$. Explain why.
b. Predict whether or not this function has a horizontal asymptote. To check your prediction, estimate the values of $g(100)$ and $g(-100)$.
c. Determine the coordinates of all/any stationary points.
d. Determine the intervals of increase and decrease.
e. Sketch the function.
5. Use the second derivative to determine the nature of the stationary points of:
a. $y=\frac{x}{x^{2}-1}$
b. $y=\frac{\sqrt{x}}{x-1}$
6. Let $f(x)=\frac{x}{-2 x^{2}+5 x-2}$ for $-2 \leq x \leq 4, x \neq \frac{1}{2}, x \neq 2$. The graph of f is shown here. The graph a local minimum at $A(1,1)$ and a local maximum at B.
a. Use the quotient rule to show that $\frac{d}{d x} f(x)=\frac{2 x^{2}-2}{\left(-2 x^{2}+5 x-2\right)^{2}}$.
b. Hence, find the coordinates of B.
c. Given that the line $y=k$ does not meet the graph of f, find the possible values of k.

7. Further Practice \Rightarrow https://maths.mq.edu.au/numeracy/web_mums/module4/Worksheet41/module4.pdf on page 6

