1. Use the Quotient Rule to determine the equation of the derivatives of the following functions:
a. $y=\frac{x^{2}}{x+1}$
b. $y=\frac{6 x}{x^{3}-2}$
c. $y=\frac{e^{3 x}}{x-3}$
d. $y=\frac{\sin (x)}{x}$
e. $y=\frac{\ln (x)}{x^{2}}$

Here are a couple of videos going through more worked examples
(1) https://www.youtube.com/watch?v=K3MxofAF-9o
(2) https://www.youtube.com/watch?v=PkdYCDAOCWU
2. (CI) Determine the gradient of the curve $y=\frac{x^{2}-4}{x^{2}-1}$ at the point(s) where the curve crosses the x-axis. Confirm your answer using the TI-84 calculator.
3. (CI) Determine the equation of the line normal to $y=\frac{x}{\sin (x)}$ at the point where $\mathrm{x}=\frac{\pi}{2}$. Confirm your answer using the TI-84 calculator.
4. (CI) For the curve defined by $y=\frac{x}{x^{2}+1}$,
a. find the equation of the normal at the original
b. the equations of the tangents that are parallel to the x-axis.
c. Hence, find the points where the tangents and normal intersect.
d. Confirm your work on the TI-84
5. (CI) For the function $f(x)=\frac{\cos (x)}{e^{x}}$ on the domain of $\left[0, \frac{5 \pi}{2}\right]$, find:
a. the x-intercepts;
b. the coordinates of the first 2 stationary points;
c. the intervals of increase/decrease.
d. Hence, sketch the curve. Verify with your calculator.
6. (CI) Sketch the curve of the function $y=\frac{(1+x)^{2}}{e^{x}}$, identifying (if they exist) all stationary points and points of inflection.
7. Further Practice \Rightarrow http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-quotient-2009-1.pdf

