1. Use the Quotient Rule to determine the equation of the derivatives of the following functions:

a.
$$y = \frac{x^2}{x+1}$$
 b. $y = \frac{6x}{x^3-2}$ c. $y = \frac{e^{3x}}{x-3}$ d. $y = \frac{sin(x)}{x}$ e. $y = \frac{ln(x)}{x^2}$

Here are a couple of videos going through more worked examples

- (1) <u>https://www.youtube.com/watch?v=K3MxofAF-9o</u>
- (2) <u>https://www.youtube.com/watch?v=PkdYCDA0CWU</u>
- 2. (CI) Determine the gradient of the curve $y = \frac{x^2 4}{x^2 1}$ at the point(s) where the curve crosses the x-axis. Confirm your answer using the TI-84 calculator.
- 3. (CI) Determine the equation of the line normal to $y = \frac{x}{sin(x)}$ at the point where $x = \frac{\pi}{2}$. Confirm your answer using the TI-84 calculator.
- 4. (CI) For the curve defined by $y = \frac{x}{x^2 + 1}$,
 - a. find the equation of the normal at the original
 - b. the equations of the tangents that are parallel to the *x*-axis.
 - c. Hence, find the points where the tangents and normal intersect.
 - d. Confirm your work on the TI-84
- 5. (CI) For the function $f(x) = \frac{\cos(x)}{e^x}$ on the domain of $\left[0, \frac{5\pi}{2}\right]$, find:
 - a. the *x*-intercepts;
 - b. the coordinates of the first 2 stationary points;
 - c. the intervals of increase/decrease.
 - d. Hence, sketch the curve. Verify with your calculator.
- 6. (CI) Sketch the curve of the function $y = \frac{(1+x)^2}{e^x}$, identifying (if they exist) all stationary points and points of inflection.
- 7. Further Practice \Rightarrow <u>http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-quotient-2009-1.pdf</u>