- 1. (CI) Find the equation of the tangent to the curve $y = e^{2x}$ at the point where x = 1. Give your answer in terms of *e*.
- 2. (CI) Let $f(x) = 3 \cos(2x) + \sin^2(x)$.
 - a. Show that $f'(x) = -5 \sin(2x)$
 - b. In the interval $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, one normal to the graph of *f* has an equation x = k. Find the value of *k*.
- 3. (CA) Let $f(x) = \cos(2x)$ and let $g(x) = \ln(3x 5)$ and let $h(x) = f(x) \times g(x)$.
 - a. Explain why the domain of h(x) is $x > \frac{5}{3}$.
 - b. Determine the equation of h(x).
 - c. Hence, or otherwise, determine the intervals in which h(x) is concave down. Include explanations of how you used the calculator to determine your domain interval.
- 4. (CI) Consider the function $f(x) = k \sin(x) + 3x$, where k is a constant.
 - a. Find *f*`(*x*).
 - b. When $x = \frac{\pi}{3}$, the gradient of the curve of f(x) is 8. Find the value of k.
- 5. (CI) Consider the curve $y = \ln(3x 1)$. Let P be a point on the curve where x = 2.
 - a. Find the gradient of the curve at *P*.
 - b. The normal to the curve at *P* cuts the *x*-axis at *R*. Find the coordinates of *R*.
- 6. (CI) Let $q(x) = 2x\sin(x)$. Find the gradient of the curve at $x = \pi$.
- 7. (CI) Find the exact value of $h\left(\frac{\pi}{3}\right)$ if $h(x) = e^{-3x} \sin\left(x \frac{\pi}{3}\right)$.
- 8. (CI) The diagram shows part of the graph of the curve with equation $y = e^{2x} \cos x$.

 - a. Show that $\frac{dy}{dx} = e^{2x}(2 \cos(x) \sin(x))$. b. Hence, find $\frac{d^2y}{dx^2}$ (the second derivative).

There is an inflexion point at P(a,b).

- c. Use your results from parts (a) and (b) to prove that:
 - i. $tan(a) = \frac{3}{4}$,
 - the gradient of the curve at P is e^{2a} . ii.

