1. (CI) Find the equation of the tangent to the curve $y=e^{2 x}$ at the point where $x=1$. Give your answer in terms of e.
2. (CI) Let $f(x)=3 \cos (2 x)+\sin ^{2}(x)$.
a. Show that $f^{\prime}(x)=-5 \sin (2 x)$
b. In the interval $\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$, one normal to the graph of f has an equation $x=k$. Find the value of k.
3. (CA) Let $f(x)=\cos (2 x)$ and let $g(x)=\ln (3 x-5)$ and let $h(x)=f(x) \times g(x)$.
a. Explain why the domain of $h(x)$ is $x>\frac{5}{3}$.
b. Determine the equation of $h^{`}(x)$.
c. Hence, or otherwise, determine the intervals in which $h(x)$ is concave down. Include explanations of how you used the calculator to determine your domain interval.
4. (CI) Consider the function $f(x)=k \sin (x)+3 x$, where k is a constant.
a. Find $f^{\prime}(x)$.
b. When $x=\frac{\pi}{3}$, the gradient of the curve of $f(x)$ is 8 . Find the value of k.
5. (CI) Consider the curve $y=\ln (3 x-1)$. Let P be a point on the curve where $x=2$.
a. Find the gradient of the curve at P.
b. The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.
6. (CI) Let $g(x)=2 x \sin (x)$. Find the gradient of the curve at $x=\pi$.
7. (CI) Find the exact value of $h^{\prime}\left(\frac{\pi}{3}\right)$ if $h(x)=\mathrm{e}^{-3 x} \sin \left(x-\frac{\pi}{3}\right)$.
8. (CI) The diagram shows part of the graph of the curve with equation $y=\mathrm{e}^{2 x} \cos x$.
a. Show that $\frac{d y}{d x}=e^{2 x}(2 \cos (x)-\sin (x))$.
b. Hence, find $\frac{d^{2} y}{d x^{2}}$ (the second derivative).

There is an inflexion point at $\mathrm{P}(\mathrm{a}, \mathrm{b})$.
c. Use your results from parts (a) and (b) to prove that:
i. $\quad \tan (a)=\frac{3}{4}$,
ii. the gradient of the curve at P is $e^{2 a}$.

