Applying Calculus: Working with Rates of Change \& Tangents \& Normals

1. (CI) Determine the equation of the line tangent to $y=x^{3} \ln (x)$ at the point where $x=1$.
2. (CI) Determine the equation of the line normal to $y=\cos (\pi-2 x)$ at the point where $x=\frac{\pi}{4}$.
3. (CI) Find the point(s) where the tangent line to the curve of $f(x)=e^{2 x-3 x^{2}}$ is horizontal.
4. (CI) Find the minimal value of $g(x)=\frac{1}{x} \times e^{x}$.
5. (CI) Determine the equation of the tangent to $y=\left(2 x^{3}-4 x+2\right)\left(x^{2}-3 x+1\right)$ at the point $(2,-10)$.
6. (CI) For the curve defined by $g(x)=(\sin x+\cos x)^{2}$ on the domain of $0 \leq x \leq 2 \pi$, determine:
a. the x - and y-intercept(s);
b. Show that $\frac{d}{d x} g(x)=2 \cos (2 x)$.
c. Hence, determine the first three stationary points;
d. Determine the "nature" of these stationary points (max/min/neither);
e. Hence, sketch the function.
7. (CI) Given the function $y=\sqrt{6 x-5}$.
a. State the domain for the function .
b. Find $\frac{d y}{d x}$ for $y=\sqrt{6 x-5}$.
c. HENCE, explain why $\frac{d y}{d x}>0$ for all values of x of the domain.
d. What does this mean about the function?
