Applying Calculus: Working with Rates of Change & Tangents & Normals

- 1. (CI) Determine the equation of the line tangent to $y = x^3 \ln(x)$ at the point where x = 1.
- 2. (CI) Determine the equation of the line normal to $y = \cos(\pi 2x)$ at the point where $x = \frac{\pi}{4}$.
- 3. (CI) Find the point(s) where the tangent line to the curve of $f(x) = e^{2x 3x^2}$ is horizontal.
- 4. (CI) Find the minimal value of $g(x) = \frac{1}{x} \times e^x$.
- 5. (CI) Determine the equation of the tangent to $y = (2x^3 4x + 2)(x^2 3x + 1)$ at the point (2,-10).
- 6. (CI) For the curve defined by $g(x) = (\sin x + \cos x)^2$ on the domain of $0 \le x \le 2\pi$, determine:
 - a. the *x* and *y*-intercept(s);
 - b. Show that $\frac{d}{dx}g(x) = 2\cos(2x)$.
 - c. Hence, determine the first three stationary points;
 - d. Determine the "nature" of these stationary points (max/min/neither);
 - e. Hence, sketch the function.
- 7. (CI) Given the function $y = \sqrt{6x 5}$.
 - a. State the domain for the function .
 - b. Find $\frac{dy}{dx}$ for $y = \sqrt{6x 5}$.
 - c. HENCE, explain why $\frac{dy}{dx} > 0$ for all values of x of the domain.
 - d. What does this mean about the function?