Applying Calculus: Working with Rates of Change \& Tangents \& Normals

1. (CI) Given the function $f(x)=\ln (2 x-1)$, determine:
a. The equation of the derivative.
b. The exact value of the instantaneous rate of change at $x=2$.
c. At what point(s) does the function have an instantaneous rate of change of $1 / 3$?
2. (CI) Given the function $f(x)=(3 x+1) \ln x$, determine:
a. The equation of the derivative
b. The exact value of the instantaneous rate of change at $x=e$.
3. (CI) Determine the equation of the line tangent to $y=(6 x+3)^{\frac{5}{3}}$ at the point where $x=4$.
4. (CI) Determine the interval(s) in which $g(x)=\sin ^{2}(x)$ is concave down on the domain of $0 \leq x \leq \pi$.
5. (CI) Find the equation of the line normal to the curve of $y=4 x e^{x^{2}-4}$ at the point $(2,8)$.
6. (CI) For the curve defined by $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-x} \cos (x)$ on the domain of $-2 \pi \leq x \leq \pi$, determine:
a. the x - and y-intercept(s);
b. the stationary points in this domain;
c. the "nature" of these stationary points (max/min/neither);
d. hence, sketch the function.
7. (CI) Given the function $g(x)=\cos (x)+\frac{1}{2} \cos (2 x)$, where $0 \leq x \leq 2 \pi$, sketch the graph, after identifying all important features including maximum(s), minimum(s) and intervals of increase and decrease.
a. Show that $g^{\prime}(x)$ can be written as $g^{\prime}(x)=-\sin x(1+2 \cos x)$.
b. Hence, find the stationary points of $g(x)$.
c. Determine the intervals of increase and decrease.
d. Hence, sketch the function.
