1. (CI) Determine the equations of the derivatives of the following functions.
a. $y=x \ln (x)$
b. $y=\frac{4}{x^{2}} \sin (x)$
c. $y=2 x^{3} e^{-x}$
d. $y=x^{3} \cos (x)$
e. $y=e^{3 x} \cos (x)$
f. $y=-\frac{\sqrt{x}}{5} \ln (x)$
2. (CI) Determine the equations of the lines tangent to the following functions at the specified points.
a. $g(x)=x e^{1+x^{2}}$ at the point where $x=0$.
b. $\quad h(x)=x^{2} \cos (x)$ at the point where $x=\pi$.
c. $f(x)=\frac{1}{x} \ln (x)$ at the point where $x=e$.
3. (CA) Determine the equations of the lines normal to the following functions at the specified points.
a. $g(x)=x e^{1+x^{2}}$ at the point where $x=1 / 2$.
b. $\quad h(x)=x^{2} \cos (x)$ at the point where $x=1 / 4$.
c. $\quad f(x)=\frac{1}{x} \ln (x)$ at the point where $x=e^{2}$.
4. (CI) For the curve of $g(x)=e^{x} \sin (x)$ on the domain of $-\pi \leq x \leq \pi$,
a. Show that $g(x)$ has 2 zeroes at $x=-\pi$ and $x=0$ and $x=\pi$.
b. Find the equations of $g^{\prime}(x)$ and $g^{\prime \prime}(x)$.
c. Find the values of x for which $g^{\prime}(x)=0$.
d. Hence, determine the interval(s) of increase and decrease of $g(x)$ and classify the extrema.
e. Sketch the function, given your previous work.
5. (CI) Given the function $g(x)=x e^{x}-e^{x}$,
a. Find the exact values of $g(1)$ and $g(0)$.
b. Show that $\frac{d}{d x} g(x)=e^{x}+g(x)$.
c. Determine the intervals of increase and decrease for $y=g(x)$.
d. Show that $g(x)$ has an inflection point at $x=-1$.
e. Determine the interval in which $g(x)$ is concave up.
f. Sketch the function given your previous work.
