- 1. (CI) Determine the equations of the derivatives of the following functions.
 - a. y = xln(x)
 - b. $y = \frac{4}{x^2} sin(x)$
 - c. $y = 2x^3 e^{-x}$
 - d. $y = x^3 cos(x)$
 - e. $y = e^{3x} cos(x)$
 - f. $y = -\frac{\sqrt{x}}{5}ln(x)$
- 2. (CI) Determine the equations of the lines *tangent* to the following functions at the specified points.
 - a. $g(x) = xe^{1+x^2}$ at the point where x = 0.
 - b. $h(x) = x^2 cos(x)$ at the point where $x = \pi$.
 - c. $f(x) = \frac{1}{x} ln(x)$ at the point where x = e.
- 3. (CA) Determine the equations of the lines *normal* to the following functions at the specified points.
 - a. $g(x) = xe^{1+x^2}$ at the point where $x = \frac{1}{2}$.
 - b. $h(x) = x^2 cos(x)$ at the point where $x = \frac{1}{4}$.
 - c. $f(x) = \frac{1}{x} ln(x)$ at the point where $x = e^2$.
- 4. **(CI)** For the curve of $g(x) = e^x \sin(x)$ on the domain of $-\pi \le x \le \pi$,
 - a. Show that g(x) has 2 zeroes at $x = -\pi$ and x = 0 and $x = \pi$.
 - b. Find the equations of g'(x) and g''(x).
 - c. Find the values of x for which g(x) = 0.
 - d. Hence, determine the interval(s) of increase and decrease of g(x) and classify the extrema.
 - e. Sketch the function, given your previous work.
- 5. **(CI)** Given the function $g(x) = xe^x e^x$,
 - a. Find the exact values of g(1) and g(0).
 - b. Show that $\frac{d}{dx}g(x) = e^x + g(x)$.
 - c. Determine the intervals of increase and decrease for y = g(x).
 - d. Show that g(x) has an inflection point at x = -1.
 - e. Determine the interval in which g(x) is concave up.
 - f. Sketch the function given your previous work.