 function. Record any observations/conclusions you might make about the function and their derivatives. Finally, what appears to be the equation of the derivative of $g(x)=\ln (x)$?
(Cirrito 19.2, p.60)

(Cirrito 20.1, p.646)
a. $g(x)=\ln \left(x^{2}-3\right)$.
b. $h(x)=\ln \left(\frac{2}{x}\right)$.
c. $f(x)=\ln \left(1-x^{3}\right)$.
d. $h(x)=(\ln x)^{2}$
3. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C l})$ Find the slope of the following curves at the specified x-values.
(Cirrito 20.1, p.646)
a. $\quad g(x)=\cos ^{2}(x)$ at the point where $x=\frac{\pi}{4}$.
b. $h(x)=\sin \left(x^{2}\right)$ at the point where $x=\frac{\pi}{2}$.
c. $f(x)=e^{\sin (x)}$ at the point where $x=-\pi$.
d. $h(x)=\sqrt[3]{(11-3 x)^{2}}$ at the point where $x=1$.
4. Repeat Question 2, but now as a CALC ACTIVE question.
5. ($\mathbf{C 5 . 4 - \mathbf { N }) (\mathbf { C l }) \text { Determine the equations of the lines that are tangent to the following functions at the }}$ specified points.
(Cirrito 20.1, p.646)
a. $g(x)=\sin (\pi x)$ at the point where $x=\frac{1}{4}$.
b. $h(x)=\sqrt{1+4 x}$ at the point where $x=2$.
c. $f(x)=e^{1-x^{3}}$ at the point where $x=1$.
d. $k(x)=\ln (2+\sin x)$ at the point where $x=\pi$.
6. (C5.4-N)(CA) Determine the equations of the lines that are normal to the following functions at the specified points.
(Cirrito 20.1, p.646)
a. $g(x)=\sin (\pi x)$ at the point where $x=\frac{1}{3}$.
b. $h(x)=\sqrt{1+4 x}$ at the point where $x=1$.
c. $f(x)=e^{1-x^{3}}$ at the point where $x=2$.
d. $k(x)=\ln (2+\sin x)$ at the point where $x=\frac{\pi}{3}$.
7. Use Symbolab or Wolframalpha to determine the derivatives of the following functions.
a. $y=x^{2} \sin (x)$
b. $y=\left(\frac{1}{x}\right) \sin (x)$
c. $y=\left(x^{4}-x^{3}\right) \cos (x)$
d. $y=e^{x} \cos (x)$
e. $y=x^{3} e^{x}$
f. $y=\left(x^{4}-x^{3}\right) e^{x}$
8. Now that you have determined the derivatives of the given functions, explain any patterns in the derivatives that you notice. Hence, propose a conjecture as to how to take derivatives of the product of two functions: $y=f(x) \times g(x)$

FOR PRACTICE \& HW

