1. (C5.7 - N) (CI) Here is a graph of the function $g(x) = \ln(x)$. Sketch a graph of the *first* derivative of this function. Record any observations/conclusions you might make about the function and their derivatives. Finally, what appears to be the equation of the derivative of $g(x) = \ln(x)$? (*Cirrito 19.2, p.60*)

- (<u>C5.4 N</u>) (CI) Determine the equations of the derivatives of the following functions. (*Cirrito 20.1, p.646*)
 - a. $g(x) = \ln(x^2 3)$.
 - b. $h(x) = \ln \left(\frac{2}{x}\right)$.
 - c. $f(x) = \ln(1 x^3)$.
 - d. $h(x) = (\ln x)^2$
- (<u>C5.4 N</u>) (CI) Find the slope of the following curves at the specified *x*-values. (*Cirrito 20.1, p.646*)
 - a. $g(x) = \cos^2(x)$ at the point where $x = \frac{\pi}{4}$.
 - b. $h(x) = \sin(x^2)$ at the point where $x = \frac{\pi}{2}$.
 - c. $f(x) = e^{\sin(x)}$ at the point where $x = -\pi$.
 - d. h(x) = $\sqrt[3]{(11-3x)^2}$ at the point where x = 1.
- 4. Repeat Question 2, but now as a CALC ACTIVE question.

5. (C5.4 - N) (CI) Determine the equations of the lines that are *tangent* to the following functions at the specified points.

(Cirrito 20.1, p.646)

- a. $g(x) = \sin(\pi x)$ at the point where $x = \frac{1}{4}$.
- b. $h(x) = \sqrt{1 + 4x}$ at the point where x = 2.
- c. $f(x) = e^{1-x^3}$ at the point where x = 1.
- d. k(x) = ln(2 + sin x) at the point where $x = \pi$.
- (C5.4 N) (CA) Determine the equations of the lines that are *normal* to the following functions at the specified points.
 (Cirrito 20.1, p.646)
 - a. $g(x) = \sin(\pi x)$ at the point where $x = \frac{1}{3}$.
 - b. $h(x) = \sqrt{1 + 4x}$ at the point where x = 1.
 - c. $f(x) = e^{1-x^3}$ at the point where x = 2.
 - d. k(x) = ln(2 + sin x) at the point where $x = \frac{\pi}{3}$.
- 7. Use Symbolab or Wolframalpha to determine the derivatives of the following functions.
 - a. $y = x^2 \sin(x)$
 - b. $y = \left(\frac{1}{x}\right) \sin(x)$
 - c. $y = (x^4 x^3)\cos(x)$
 - d. $y = e^x \cos(x)$
 - e. $y = x^{3}e^{x}$
 - f. $y = (x^4 x^3)e^x$
- 8. Now that you have determined the derivatives of the given functions, explain any patterns in the derivatives that you notice. Hence, propose a conjecture as to how to take derivatives of the product of two functions: $y = f(x) \times g(x)$

FOR PRACTICE & HW

http://mrsantowski.tripod.com/2019AnalysisApproachesSL/Homework/PS49_PR_Practice.pdf

https://www.nagwa.com/en/worksheets/280137153968/