1. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C I})$ Determine the equations of the lines that are tangent and normal to the following functions at the specified points. (Reminder: a normal line is perpendicular to a tangent line) (Cirrito 20.1, p.646)
a. $g(x)=\sin (x)$ at the point where $x=\frac{\pi}{4}$.
b. $\quad h(x)=2-4 \cos (x)$ at the point where $x=\frac{5 \pi}{6}$.
c. $f(x)=2 \sin (x)-\cos (x)$ at the point where $x=\pi$.
 tangent line that is parallel to the line $y-x+6=0$?
(Cirrito 20.1, p.646)
2. (C5.4-N)(CI) To analyze the function $g(x)=\cos (x)-\sqrt{3} \sin (x)$ on the domain $-2 \pi<x<2 \pi$,
(Cirrito 20.1, p.646)
a. find the x-intercepts of $g(x)$
b. find the derivative of $g(x)$
c. find the coordinates of the extremas of $g(x)$.
d. find the intervals of increase and decrease of $g(x)$.
e. sketch $g(x)$
f. The graph of $g(x)$ can be rewritten in a new identity, in the form of $y=R \cos (x-k)$. Find the values of R and k.
3. (C5.4-N) (CA) Use symbolab (at https://www.symbolab.com/) or wolframalpha (at https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/derivatives/ to determine the following derivatives:
a. (i) $y=\sin (2 x)$
(ii) $y=\sin (3 x)$
(iii) $y=\sin (5 x)$
(iv) $y=\sin (12 x)$
(v) $y=\sin (\pi x)$
b. (i) $i=\cos (2 x)$
(ii) $y=\cos (3 x)$
(iii) $y=\cos (5 x)$
(iv) $y=\cos (12 x)$
(v) $y=\cos (\pi x)$
c. Summarize your observations \Rightarrow what is the derivative of $f(x)=\sin (K x)$ and $g(x)=\cos (K x)$
 slope of -4 ?
(Cirrito 20.1, p.646)
4. (C5.4-N) (CA) Use symbolab (at https://www.symbolab.com/) or wolframalpha (at https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/derivatives/ to determine the following derivatives:
a. (i) $y=\sin (2 x+4)$
(ii) $y=\sin (3 x-5)$
(iii) $y=\sin (5 x+25)$
(iv) $y=\sin (\pi x-3)$
b. (i) $y=\cos (2 x-7)$
(ii) $y=\cos (3 x+1)$
(iii) $y=\cos (5 x-20)$
(iv) $y=\cos (\pi x+2)$
c. Summarize your observations \Rightarrow what is the derivative of the linear composites of sinusoidal functions like $f(x)=\sin (m x+b)$ and $g(x)=\cos (m x+b)$
5. ($\mathbf{C 5 . 7 - \mathbf { N }) (\mathbf { C l }) \text { Here are two graphs of functions. Sketch graphs of the first derivatives of each }}$ function. Record any observations/conclusions you might make about the two functions and their derivatives.
(Cirrito 19.2, p.60)

