- 1. (C5.4 N) (CI) Determine the equations of the lines that are *tangent* and *normal* to the following functions at the specified points. (Reminder: a normal line is perpendicular to a tangent line) (Cirrito 20.1, p.646)
 - a. $g(x) = \sin(x)$ at the point where $x = \frac{\pi}{4}$.
 - b. $h(x) = 2 4\cos(x)$ at the point where $x = \frac{5\pi}{6}$.
 - c. $f(x) = 2\sin(x) \cos(x)$ at the point where $x = \pi$.
- 2. (C5.4 N) (CI) At what x value(s) in the domain of $0 \le x \le 3\pi$ does the curve $g(x) = 3 2\sin(x)$ have a tangent line that is parallel to the line y - x + 6 = 0? (Cirrito 20.1, p.646)
- 3. (C5.4 N) (CI) To analyze the function $g(x) = \cos(x) \sqrt{3}\sin(x)$ on the domain $-2\pi < x < 2\pi$, (Cirrito 20.1, p.646)
 - a. find the *x*-intercepts of g(x)
 - b. find the derivative of q(x)
 - c. find the coordinates of the extremas of q(x).
 - d. find the intervals of increase and decrease of g(x).
 - e. sketch q(x)
 - f. The graph of q(x) can be rewritten in a new identity, in the form of $y = R\cos(x k)$. Find the values of *R* and *k*.
- 4. (C5.4 N) (CA) Use symbolab (at https://www.symbolab.com/) or wolframalpha (at https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/derivatives/ to determine the following derivatives:
 - a. (i) y = sin(2x)(ii) $y = \sin(3x)$ (iii) $y = \sin(5x)$ (iv) $y = \sin(12x)$ (v) $y = \sin(\pi x)$
 - b. (i) i = cos(2x)(ii) $y = \cos(3x)$ (iii) $y = \cos(5x)$ (iv) $y = \cos(12x)$ (v) $y = \cos(\pi x)$
 - c. Summarize your observations \Rightarrow what is the derivative of $f(x) = \sin(Kx)$ and $g(x) = \cos(Kx)$
- 5. (C5.4 N) (CI) At what point(s) in the domain of $0 < x < 2\pi$ would the function $y = 4\cos(2x)$ have a slope of -4?

(Cirrito 20.1, p.646)

(C5.4 - N) (CA) Use symbolab (at <u>https://www.symbolab.com/</u>) or wolframalpha (at <u>https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/derivatives/</u> to determine the following derivatives:

a.	(i) $y = \sin(2x + 4)$	(ii) <i>y</i> = sin(3 <i>x</i> - 5)	(iii) <i>y</i> = sin(5 <i>x</i> + 25)	(iv) $y = \sin(\pi x - 3)$
b.	(i) <i>y</i> = cos(2 <i>x</i> - 7)	(ii) $y = \cos(3x + 1)$	(iii) <i>y</i> = cos(5 <i>x</i> - 20)	(iv) $y = \cos(\pi x + 2)$

- c. Summarize your observations \Rightarrow what is the derivative of the linear composites of sinusoidal functions like $f(x) = \sin(mx + b)$ and $g(x) = \cos(mx + b)$
- 7. **(C5.7 N) (CI)** Here are two graphs of functions. Sketch graphs of the *first* derivatives of each function. Record any observations/conclusions you might make about the two functions and their derivatives.

(Cirrito 19.2, p.60)

