1. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C l})$ Determine the equations of the specified lines that are tangent and normal to the following functions at the specified points. (Reminder: a normal line is perpendicular to a tangent line)
(Cirrito 20.1, p.646)
a. $g(x)=x^{2}+3 x$ at the point where $x=2$.
b. $\quad f(x)=\frac{1}{2} \sqrt{x}$ at the point where $x=4$.
c. $h(x)=x-\frac{1}{x}$ at the point where $x=-1$.
d. $k(x)=\frac{5}{x^{2}}+\frac{1}{\sqrt{x}}$ at the point where $x=1$
 is perpendicular to the line $2 y-x+6=0$?
(Cirrito 20.1, p.646)
 parabola $y=x^{2}+k$.
(Cirrito 20.1, p.646)
 point (2,2). Illustrate your answer with a sketch.
(Cirrito 20.1, p.646)
 points of tangency. Illustrate your answer with a sketch.
(Cirrito 20.1, p.646)
2. ($\mathbf{C 5 . 7 - N}$)(CI) Here are two graphs of functions. Sketch graphs of the first derivatives of each function. Record any observations/conclusions you might make about the two functions and their derivatives.
(Cirrito 19.2, p.60)
a.

b.

3. (C5.4-N) (CI) For the following functions, use the first and second derivatives to determine (i) the extrema, (ii) the intervals of increase and decrease, (iii) the inflection points and (iv) the intervals of concavity and then sketch the functions.
a. $g(x)=x^{4}-6 x^{2}-27$
b. $h(x)=x^{3}-x^{2}-x+1$ on the interval $[-2,3]$
c. $f(x)=\frac{1}{4} x^{4}-x^{3}-1$
