1. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C l})$ Determine the equations of the specified lines that are tangent and normal to the following functions at the specified points. (Reminder: a normal line is perpendicular to a tangent line)
(Cirrito 20.1, p.646)
a. $g(x)=x^{2}(2 x-1)(x+3)$ at the point where $x=-1$.
b. $f(x)=2 \sqrt{x}-\frac{1}{2} x$ at the point where $x=4$.
c. $\quad h(x)=\frac{2}{x}-\frac{2}{x^{2}}$ at the point where $x=-1$.
2. (C5.4-N)(CA) At what x value(s) does the curve $y=\frac{1}{2} x^{4}+\frac{4}{3} x^{3}-x^{2}-6 x+7$ have a tangent line that is perpendicular to the line $2 \mathrm{y}-\mathrm{x}+6=0$?
(Cirrito 20.1, p.646)
3. (C5.4-N)(CI) The tangent line to a curve $y=f(x)$ at $x=2$ passes through the points $(0,-20)$ and $(5,40)$. What are the values of $f(2)$ and $f^{\prime}(2)$?
(Cirrito 20.1, p.646)
4. (C5.4-N)(CI) The tangent line to a curve $y=f(x)$ at $x=1$ passes through the point $(4,9)$. If $f(1)=3$, then what is the value of $f^{\prime}(1)$?
(Cirrito 20.1, p.646)
5. ($\mathbf{(5 . 4 - \mathbf { N }) (\mathbf { C I }) \text { The tangent line to a curve } y = g (x) \text { at } x , ~ (t)}$ $=3$ has an x-intercept at $\frac{10}{3}$ and a y-intercept of -10 . What are the values of $g(3)$ and $g^{\prime}(3)$?
(Cirrito 20.1, p.646)
6. ($\mathbf{C 5 . 7 - \mathbf { N }) (\mathbf { C I }) \text { Here is a graph of a function. Sketch }}$ graphs of the first and second derivatives of this function.
(Cirrito 19.2, p.609)

7. (C5.4-N)(CI) For $g(x)=\frac{1}{4} x^{4}-\frac{4}{3} x^{3}-\frac{5}{2} x^{2}+1$ determine:
(Cirrito 20.2, p.649)
a. the equation of the derivative of $g(x)$.
b. the zeroes of $g^{\prime}(x)$.
c. Hence or otherwise, find the coordinates of the stationary points of g.
d. Hence or otherwise, find the intervals of increase and decrease of g.
e. Sketch a graph of g. Then use your calculator and graph g and compare.
8. (C5.4-N)(CI) For the function $f(x)=-x^{4}-2 x^{3}+3 x$ determine:
(Cirrito 20.2, p.649)
a. the equation of the second derivative of $f(x)$.
b. the zeroes of $f^{\prime \prime}(x)$.
c. Hence or otherwise, find the x-coordinates of the inflection points of f.
d. Hence or otherwise, find the intervals of concavity of f.
e. I have included a graph of the derivative of $f(x)$. Use it to help you sketch a graph of f. Then use your calculator and graph f and then compare.

