1. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C I})$ Determine the equations of the lines that are tangent and normal to the following functions at the specified points. (Reminder: a normal line is perpendicular to a tangent line) (Cirrito 20.1, p.646)
a. $y=x(x-3)^{2}$ at the point where $x=1$.
b. $y=x^{3}+x^{2}$ at the point where $x=-\frac{2}{3}$.
c. $y=2 x+\frac{1}{x}$ at the point where $x=\frac{1}{2}$.
2. ($\mathbf{C} 5.4-\mathbf{N})(\mathbf{C l})$ The function $y=a x^{3}-2 x^{2}-x+7$ has a slope of 3 at the point where $x=2$. Find the value of a.
(Cirrito 20.1, p.646)
3. ($\mathbf{C 5 . 7 - \mathbf { N }) (\mathbf { C l }) \text { Here is a graph of a function. Sketch }}$ graphs of the first and second derivatives of this function.
(Cirrito 19.2, p.609)

4. (C5.4-N)(CI) For $f(x)=2 x^{3}+3 x^{2}-72 x+5$ determine:
(Cirrito 20.2, p.649)
a. the equation of the derivative of $f(x)$.
b. the zeroes of $f^{\prime}(x)$.
c. Hence or otherwise, find the coordinates of the stationary points of f.
d. Hence or otherwise, find the intervals of increase and decrease of f.
e. Sketch a graph of f. Then use your calculator and graph f and compare.
5. ($\mathbf{C 5 . 4 - \mathbf { N }) (\mathbf { C I }) \text { For the function } f (x) = 3 x ^ { 4 } - 4 x ^ { 3 } - 1 2 x ^ { 2 } + 5 \text { determine: }}$
(Cirrito 20.2, p.649)
a. the equation of the second derivative of $f(x)$.
b. the zeroes of $f^{\prime \prime}(x)$.
c. Hence or otherwise, find the coordinates of the inflection points of f.
d. Hence or otherwise, find the intervals of concavity of f.
e. Sketch a graph of f. Then use your calculator and graph f and then compare.
6. (SP4.3-R)(CA) Here are the results of last year's IB scores from the 2018 graduating class from Juan Fine High School:
(Oxford 8.3, p.260)

Score	1	2	3	4	5	6	7
Number of students	0	2	2	8	12	6	1

a. Explain why this example illustrates a discrete data set.
b. (CI) Set up a calculation in order to determine the average score from these students.
c. Determine the mean, median, variance and standard deviation of the scores.
d. How probable is it that a randomly chosen student from this class scored 5 or more?
e. Draw a frequency histogram for this distribution.
7. (SP4.7-E) (CA) Here is a probability distribution of a discrete random variable (say the number of students and their AP scores in the AP US History course):
(Oxford 15.1, p.520)

X (score)	0	1	2	3	4	5
$P(X=x)$	0.08	0.40	0.24	0.15	0.08	0.05

a. Use the equation $E(X)=\Sigma x P(x)$ to determine the expected value of the scores.
b. Use the equation $\operatorname{var}(X)=\sigma^{2}=\Sigma(x-\mu)^{2} P(x)$ to determine the variance and hence the standard deviation of the scores.
c. Use your calculator and lists to perform the same calculations.
d. Draw a frequency histogram for this distribution.
8. (SP4.7-E) (CA) The discrete random variable X has a probability density function defined by the rule $P(X=x)=k\left(25-x^{2}\right)$, for $x \in\{1,2,3,4,5\}$.
(Oxford 15.1, p.520)
a. Create a probability distribution table and hence find the value of k.
b. Find $E(X)$ and $\operatorname{var}(X)$.
c. Find $P(1<x \leq 3)$.
d. Find $P(x=3 \mid x \geq 2)$.

