1. (NA1.7-R)(CI) Use the properties of logarithms to write each logarithmic expression as a sum, difference or constant multiple of single logarithms.
(Cirrito 7.4, p.221)
a. $\quad \log _{2}(2 m)$
b. $\quad \ln \sqrt[5]{x}$
c. $\quad \log _{3}\left(a^{2} b^{3}\right)$
d. $\log _{10}\left[10 x(1+r)^{t}\right]$
e. $\ln \left(\frac{m^{3}}{n}\right)$
2. (GT3.7-R)(CI) The function, $y=f(x)$ on the domain of $0 \leq x \leq \pi$, is pictured. Determine: (Cirrito 10.3, p337)
a. the amplitude, the period and the axis of the curve.
b. an appropriate equation for the function.
c. the intervals of increase on the domain
 of $0 \leq x \leq \pi$.
d. the exact values of the zeroes on $0 \leq x \leq \pi$.
e. where is $\frac{d}{d x} f(x)=0$ ?
3. ( $\mathbf{F 2 . 5}, \mathbf{F 2 . 9 - R} \mathbf{( C I})$ A function is defined as $g(x)=e^{x}-1$.
(Cirrito 5.3.3, p136; 5.3.4, p141)
a. Find the intercept(s) and asymptote(s) of $g$.
b. Hence, sketch the function.
c. Mr. S. suggests that $f(x)=\ln (x)+1$ is the inverse of $g$. Simplify the composition $(g \circ f)(x)$ to see if Mr . S is or is not correct.
4. ( $\mathbf{( 5 . 3 - \mathbf { N } ) ( \mathbf { C I } ) \text { Here is the graph of the derivative of a function, }}$ $\frac{d}{d x} f(x)$. List what you can figure out about the original function and then prepare a sketch of the original function.

5. (SP4.7-E) (CA) A discrete random variable $X$ has the following probability distribution.
(Cirrito 16.1, p.527)

| $X$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | 0.475 | $2 k^{2}$ | $\frac{k}{10}$ | $6 k^{2}$ |

a. Find the value of k .
b. Write down $P(X=2)$.
c. Find $P(X=2 \mid X>0)$
6. (C5.8-E) (CI) For $f(x)=2 x^{3}-9 x^{2}+12 x-2$, determine:
(Cirrito 20.2, p649)
a. the intervals of increase and decrease of $f$,
b. the maximum and/or minimum values of $f$,
c. the intervals of concavity of $f$,
d. any inflection point(s) of $f$.
e. Then, sketch a graph of $f$. Then use your calculator and graph $f$ and compare.
7. ( $\mathbf{F 2 . 4}, \mathbf{F 2 . 5}, \mathbf{C} 5.4-\mathbf{E} \mathbf{)} \mathbf{( C I )}$ Let $f(x)=1-\frac{3}{x}$ and let $g(x)=x^{2}-3 x$.
(Cirrito 5.4, p.148)
a. Find, if possible, the coordinates of the minimum point(s) of $f$ and $g$ OR explain why it is not possible.
b. Find the coordinates of the point(s) of intersection of the graphs of $f$ and $g$.
c. Find the equation of the inverse function of each function.
d. Find the equations of the line tangent to $g(x)$ and the line tangent to $f(x)$ at $x=1$.
e. Where do the two tangent lines intersect?
8. (F2.2, F2.3, C5.1-E) (CI) Consider the function $g(x)=\sqrt{x+4}$,
(Cirrito 6.1, 6.2, p.167)
a. Determine the domain and range of $y=g(x)$.
b. The function $y=g(x)$ is now translated 6 units to the left and then horizontally compressed by a factor of 3 . Write down the new equation of this transformed function.
c. Determine the equation of $y=g^{-1}(x)$.
d. What is the domain of $y=g^{-1}(x)$ ?
e. Determine the simplified equation that results from the $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$ calculation.
f. Hence or otherwise, determine the rate of change of $y=g(x)$ at the point where $x=12$.

