1. ($\mathbf{C} 5.4-\mathrm{N})(\mathbf{C l})$ Determine the equations of the lines that are (i) tangent to and (ii) normal to the following functions at the specified points:
(Cirrito 20.1, p.646)
a. $y=3 x^{2}-4 x$, at the point $(1,-1)$.
b. $y=1-6 x-x^{2}$, at the point $(-3,10)$.
2. ($\mathbf{F} \mathbf{2 . 5}, \mathbf{C} 5.8$ - \mathbf{R}, \mathbf{E}) (CI) A quadratic function is given by the equation $f(x)=x^{2}+4 x+B$.
(Cirrito 5.4.2, p.157)
a. Determine the value of B if $f^{-1}(x)=-2+\sqrt{x-6}$.
b. Perform the following compositions:
i. $f o f^{-1}(x)$
ii. $\quad f^{-1} o f(x)$.
iii. Describe what happens and explain why.
c. At what point would you expect the tangent line drawn to the quadratic function to have a zero slope? Explain why.
3. (SP 4.7-N) (CA) For a discrete random variable, X, the probability distribution is defined by the equation:

$$
P(X=x)=f(x)= \begin{cases}k x & x=1,2,3,4,5 \\ k(10-x) & x=6,7,8,9\end{cases}
$$

(Cirrito 16.1, p.527)
Find:
a. The value of the constant, k.
b. Hence, find $P(X=3)$
c. Find the mean (now called the expected value of X)
4. (GT 3.8-R) (CI) Solve the following equations on the domain of $0<x<2 \pi$.
(Cirrito 10.4, p.351)
a. $\sqrt{2} \cos (x)-1=0$
b. $\sqrt{2} \sin (2 x)+1=0$
5. (C $6.1-\mathrm{N})(\mathrm{Cl})$ The function $y=x^{2}+3 x$ has a tangent line drawn at $x=a$ where the slope of the tangent line is 5 . Find the value of a.
(Cirrito 20.1, p.646)
6. (GT $3.5-E)(C I)$ For each of the following angles, determine the value of the \sin , \cos, and tan ratios. (Cirrito 10.1, p.315)
a. $-\frac{\pi}{3}$
b. $\frac{4 \pi}{3}$
c. π
7. ($\mathbf{C} 5.7,5.8-\mathbf{N}$) (CI) For the function $f(x)=x^{4}-4 x^{3}$, determine:
(Cirrito 20.2, p.649)
a. the equation of the second derivative of $f(x)$, that is $\frac{d^{2} y}{d x^{2}} f(x)$.
b. the zeroes of $\frac{d^{2} y}{d x^{2}} f(x)$.
c. Hence or otherwise, find the coordinates of the inflection points of f.
d. Hence or otherwise, find the intervals of concavity of f.
e. Sketch a graph of f. Then use your calculator and graph f and then compare.
8. ($\mathbf{C} 5.7,5.8-\mathrm{N})(\mathrm{CI})$ Here is a graph of a function. Draw graph of the first derivatives of this function. (Cirrito 19.2, p.609)

