1. (T3.5-E) (CI) Solve the following trig equations on the domain of $0<x<2 \pi$.
(Cirrito 10.2.2, p332)
a. $2 \cos ^{2}(x)+3 \sin (x)=0$
b. $2 \sin ^{2}(x)-3 \cos (x)=0$
2. (GT $3.5-\mathbf{E})(\mathbf{C I})$ For each of the following angles, determine the value of the \sin , \cos, and tan ratios. (Cirrito 10.1, p.315)
a. $\frac{\pi}{3}$
b. $\frac{5 \pi}{3}$
c. $-\pi$
d. $\frac{5 \pi}{6}$
e. $\frac{2 \pi}{3}$
f. $-\frac{11 \pi}{6}$
3. A poll of 20 students was taken at CAC to see whether they support banning the sale of plastic water bottles on campus.It is known that approximately 60% of the students support the ban.
(Cirrito 16.3.4, p544)
a. What is the probability that 5 students support the ban?
b. What is the probability that none students support the ban?
c. What is the probability that at least 2 students support the ban?
d. How many students are expected to support the ban?
4. (F2.1, F2.2, F2.4-R)(CI) Given the function $g(x)=x^{2}+2 x+3$, where $x>-1$.
(Cirrito 5.4, p148)
a. Use calculus to find the vertex of $g(x)$.
b. Hence, or otherwise, find the inverse, $g^{-1}(x)$.
c. On the same set of axes, sketch the graphs of $g(x)$ and $g^{-1}(x)$, labeling all intercepts.
d. Will there exist a value of x such that $g(x)=g^{-1}(x)$? If so, find its value. If not, explain why not.
5. (F2.5-R)(CI) For the rational function $r(x)=\frac{2 x-5}{x-2}, x \neq 2$, determine:
(Cirrito 5.3.5, p144)
a. the equation(s) of the asymptote(s) and the intercepts of $r(x)$.
b. Evaluate $\lim _{x \rightarrow \infty} r(x)$.
c. Rewrite the equation of $r(x)$ in the form $r(x)=a+\frac{b}{x-2} ; a, b \in Z$.
d. Hence, determine the transformations that were applied to $y=\frac{1}{x}$ to create $r(x)$.
6. (P5.6-R)(CI) Two events, A and B, are such that $P(A)=\frac{9}{16}$ and $P(B)=\frac{3}{8}$ and $P(A \mid B)=\frac{1}{4}$. Find the probability that:
(Oxford 3.4, p85)
a. Both events will happen.
b. Only one of the events will happen
c. Neither of the events will happen
d. Event A happens given that both events happen.
7. (C5.3- $\mathbf{N})(\mathbf{C I})$ For the function $f(x)=x^{3}+x^{2}-x-1$, determine:
(Cirrito 20.2, p649)
a. the equation of the derivative of $f(x)$.
b. the zeroes of f^{\prime}.
c. Hence or otherwise, find the coordinates of the stationary points of f.
d. Hence or otherwise, find the intervals of increase and decrease of f.
e. Sketch a graph of f. Then use your calculator and graph f and compare.
8. We are going to investigate the power rule for determining the equations of derivatives. Using your calculator, or desmos, do the following:
a. Let $f(x)=\sqrt{x}=x^{\frac{1}{2}}$. Graph the function \Rightarrow put that equation into y_{1} in your calculator.
b. Then in y_{2} write down what you think the equation of the derivative function should be.
c. In y_{3} you will type in ' n Deriv' then ' x ' then y_{1} then ' x ' again.
d. Graph the functions. If you did it correctly, y_{2} and y_{3} should match. If not, go back and figure out what you did wrong in calculating your derivative.
e. Repeat this exercise for the following functions:

$$
\begin{array}{rll}
\text { i. } & g(x)=\sqrt[3]{x} \\
\text { ii. } & g(x)=\frac{1}{x} \\
\text { iii. } & g(x)=\frac{1}{x^{2}}
\end{array}
$$

