- 1. (GT3.6 E) (CA) For the \triangle HKJ, side HK = 18 cm and side JK = 15 cm and \angle JHK = 53°. Determine the measure of side HJ and hence the area of the triangle. (*Cirrito 9.5.2, p297*)
- 2. **(GT3.5 E) (CI) SKILL**: Quadratic Trig Equations. Solve the following given $0 \le x \le 2\pi$ (*Oxford, Chap 13D, p455*)
 - a. $2\cos^2 x + \cos x 1 = 0$
 - b. $2\sin^2 x 3\sin x + 1 = 0$
- 3. (<u>C5.1 N</u>) (CA) Continuing this work with understanding limits, evaluate the following limits my suggestion is to graph each function. (in other words, determine the limiting function value of *f*(*x*) in the following scenarios)

a. (i)
$$\lim_{x \to -1} (5)$$
 (ii) $\lim_{x \to -\frac{5}{2}} (-x+2)$ (iii) $\lim_{x \to 2} (x^3 - x^2 - 4)$
b. (i) $\lim_{x \to 1} (-\frac{x^2}{2} + 2x + 4)$ (ii) $\lim_{x \to 3} (-\sqrt{x+3})$ (iii) $\lim_{x \to \frac{3}{2}} (-\sqrt{4+2x})$

 (C5.1 - N) (CI) Find the equations of derivatives of the following functions: (Cirrito 19.1, p608)

a. i.
$$g(x) = x^3 + 2x^2 - 15x - 13$$

b. i. $k(x) = \frac{x}{2} - 6$
ii. $h(x) = (2x - 7)^2$
ii. $m(x) = \frac{x^4}{4} + \frac{3x^3}{2} - 2x^2$

5. **(C5.3 - N) (CI)** For the function $f(x) = x^4 - 2x^3$, determine: *(Cirrito 20.2, p649)*

- a. the equation of the derivative of f(x).
- b. the zeroes of f `.
- c. Hence or otherwise, find the coordinates of the **stationary points** of *f*.
- d. Hence or otherwise, find the **intervals of increase and decrease** of *f*.
- e. Sketch a graph of *f*. Then use your calculator and graph *f* and compare.
- 6. (SP5.5 R) (CI) A bag contains 4 green marbles and 6 yellow marbles. Sam selects one marble from the bag and then without replacement, he selects a second marble. (Oxford 3.5, p89)
 - a. Write down the probability that the first marble Sam selects is green.
 - b. Find the probability that Sam selects two green marbles.
 - c. Find the probability that Sam selects two marbles of different colour.

7. (GT 3.5 - E) (CI) For each of the following angles, determine the value of the sine, cosine, and tangent ratios.

(Cirrito 10.1, p.315)

a. $\frac{\pi}{4}$ b. $\frac{7\pi}{4}$ c. $-\frac{3\pi}{2}$ d. $-\frac{5\pi}{6}$ e. $\frac{4\pi}{3}$ f. $-\frac{\pi}{4}$

- (SP5.8 N) (CA) Mr. Smith is playing a game, wherein he is tossing a biased coin. The probability of obtaining heads on this biased coin is ½.
 (Cirrito 16.3, p544)
 - a. He tosses the coin five times. Find the probability of getting
 - i. at least three heads;
 - ii. two heads and three tails.
 - b. Mr. Dunham also plays the game and he now tosses the coin 12 times.
 - i. Find the expected number of heads.
 - ii. Mr. Dunham wins \$ 10 for each head obtained, and loses \$ 6 for each tail. Find his expected winnings.