1. ($\mathbf{F 2 . 5}, \mathbf{C} 6.1-\mathrm{R}, \mathbf{E})(\mathbf{C I} \& \mathbf{C A})$ Given $g(x)=\frac{x+7}{2 x-5}$, determine:
(Cirrito 5.3.5, p144)
a. The value(s) of the x - and y-intercepts.
b. The equation(s) of the asymptote(s).
c. Sketch the function.
d. Determine the equation of $y=g^{-1}(x)$
2. (T3.5-R) (CI) Quadratic Trig Equations. Each of these equations has already been factored for you. Solve for x on the domain of $-2 \pi \leq x \leq 2 \pi$.
a. $\cos x(\sqrt{2} \sin x+1)=0$
b. $(\cos x-1)(2 \cos x+1)=0$
3. (T3.5-E) (CI) Quadratic Trig Equations: Factor, then solve the following expressions for x on the domain of $0 \leq x \leq 2 \pi$:
a. $1-\cos ^{2} x=0$
b. $1-4 \sin ^{2} x=0$
c. $\sin x-\sin ^{2} x=0$
4. (C6.3-N) (CA) Graph the function $g(x)=e^{-0.25 x} \cos (x)$ on the domain of $-\pi<x<2 \pi$ on your TI-84 and hence determine:
(Cirrito 20.2.2, p651)
a. the x-coordinate(s) of the extremas.
b. the domain interval(s) in which the function values are increasing.
c. the estimated value(s) of the x-coordinates of the inflection point(s).
d. the domain interval(s) in which the function is concave down.
e. Include a sketch, labelling the important points from (a) and (c).
5. (T3.5-E) (CI) Equations \& Identities. Each of these equations involves a double angle. Solve for x on the domain of $0 \leq x \leq 2 \pi$:
a. $\quad \sin (2 x)-\sin (x)=0$
b. $\cos (x)-\cos (2 x)=0$
6. (SP5.7-N)(CA) The random variable, X, has a probability distribution as shown on the table:
(Cirrito 16.1, p527)

$X=x$	5	10	15	20	25
$P(X=x)$	$\frac{3}{20}$	$\frac{7}{30}$	k	0.3	$\frac{13}{60}$

a. Find the value of k.
b. Find $P(x>10)$
c. Find $P(5<x \leq 20)$
d. Find the mean (now called expected value) and the standard deviation and the variance.
7. (A1.2, F2.7-E) (CI) Solve the following logarithmic equations:
(Cirrito 7.4, p244)
a. $\ln (3 x+1)-\ln (4-x)=\ln (4)$
b. $\log _{2}\left(3 x^{2}+28\right)-\log _{2}(3 x-2)=1$
8. (T3.6-R) (CA) The following diagram shows $\triangle A B C$. The area of $\triangle A B C$ is $22 \mathrm{~cm}^{3}$.
(Cirrito 9.5, p291)
a. Find x.
b. Find $B C$.
c. Find $\angle \mathrm{ACB}$.

