1. ($\mathbf{T 3 . 5 - E) (C I)}$ For the following expressions, factor the expression in the first column and then the corresponding trigonometric expression in the second column. What observations can you make? (Cirrito 2.4.1, p39)

a.	$x^{2}-1$	$\sin ^{2}(x)-1$
b.	$x^{2}-x-2$	$\cos ^{2}(x)-\cos (x)-2$
c.	$x^{2}-x$	$\sin ^{2}(x)-\sin (x)$
d.	$2 x^{2}-x-1$	$2 \cos ^{2}(x)-\cos (x)-1$

2. (SP5.2-E) (CA) Here are the results of Nadine's last 5 quiz scores: $75 \%, 83 \%, 67 \%, 83 \%, 76 \%$.
(Cirrito 13.3, p.474; Oxford 8.3, p.260)
a. Find her mean quiz score and find the standard deviation of her quiz scores.
b. Nadine would like to raise her quiz average to 79%. What must be the score of her next quiz in order to get the average of 79%.
c. Mr. D wants to raise ALL grades by 6%. What will be the new (i) mean and (ii) standard deviation of her quiz scores?
3. (SP5.5, SP5.6-R)(CI) For the two events, A and B, it is known that: $P\left(A^{\prime} \cap B^{\prime}\right)=0.35$; $\mathrm{P}(A)=0.25 ; \mathrm{P}(B)=0.6$ (HINT: do not assume the events are independent). Find:
(Cirrito 15.2, p.508)
a. i. $\quad P(A \cap B)$
ii. $\mathrm{P}(B \mid A)$
iii. $P\left(B^{\prime} \mid A\right)$
b. Can you draw a venn diagram for this problem? Draw one OR explain why you can't.
c. Can you draw a tree diagram for this problem? If so, draw one OR explain why you can't.
4. ($\mathbf{T 3 . 2 - R) (C I) R e c a l l ~ o u r ~ s p e c i a l ~ r i g h t ~ t r i a n g l e s . ~ U s e ~ t h e m ~ t o ~ d e t e r m i n e ~}$ (Cirrito 10.1, p315)
a. (i) $\sin \left(\frac{\pi}{3}\right)$
(ii) $\cos \left(\frac{-2 \pi}{3}\right)$
(iii) $\tan \left(\frac{5 \pi}{4}\right)$
b. (i) $\sin ^{2}(\pi / 6)-\cos ^{2}(\pi / 4)$
(ii) $2 \cos ^{2}(\pi / 3)-1$
c. (i) $\sin ^{-1}(1 / 2)$
(ii) $\tan ^{-1}(-1)$
5. ($\mathbf{A} 1.1-\mathbf{E})(\mathbf{C l})$ Given an arithmetic sequence wherein the first term is 5 and the fourth term is 17, determine:
(Cirrito, 8.1, p241)
a. The eighteenth term,
b. The sum of the first twelve terms
c. If the numbers 5 and 17 were the first two terms of a geometric sequence, what would be the next two terms of this geometric sequence?
6. $(\mathbf{A} 1.2-\mathbf{N})(\mathbf{C I})$ If $\ln (2)=0.69$ and $\ln (3)=1.10$ and $\ln (5)=1.61$, determine the values of: (Cirrito 7.4, p221)
(a) $\ln (100)$
(b) $\ln (1.5)$
(c) $\ln (150)$
(d) $\ln (0.1)$
(e) $\ln (135)$
(f) $\ln (1.2)$
7. ($\mathbf{F 2 . 2}, \mathbf{F 2 . 5}, \mathbf{F 2 . 6} \mathbf{- R}$) (CI) For the following functions, determine: (i) the equation(s) of the asymptotes, (ii) the x - and y-intercept(s) and hence sketch the functions on graph paper, labelling these key features. State the transformations that were applied to the "parent" function as well. (Cirrito 5.3, p122)
a. $g(x)=5-1 / 2 e^{x}$
b. $h(x)=2+\ln (x-5)$
 For example, the equation $(x+2)^{2}=x^{2}+4 x+4$ is going to be true, regardless of what number you substitute in for x. (Cirrito 10.2, p327)
a. Substitute in $x=1, x=2, x=5$ into BOTH sides of the equation and see what happens.
b. Is the algebraic equation $x^{2}+y^{2}=(x+y)^{2}-2 x y$ an identity? True or False? Prove it.
c. We also have trig identities. Given the equation $\sin ^{2}(x)+\cos ^{2}(x)=1$, use $x=\frac{\pi}{6}$ and $x=\frac{\pi}{4}$ to show that $\sin ^{2}(x)+\cos ^{2}(x)=1$ could be an identity. How would you prove it?
d. Given the expression $2 \sin (x) \cos (x)$:
i. Evaluate $2 \sin (x) \cos (x)$ for $x=30^{\circ}$. Then, use your answer to evaluate $\sin ^{-1}($ ANS $)$.
ii. Evaluate $2 \sin (x) \cos (x)$ for $x=45^{\circ}$. Then, use your answer to evaluate $\sin ^{-1}($ ANS $)$.
iii. What observation do you make?
iv. Graph the function $f(x)=2 \sin (x) \cos (x)$ to confirm your observation in Qdiii
