1. (GT3.2; CA) A rectangular box is constructed as shown, with measurements $H G=10 \mathrm{~cm}, \angle F H E=30^{\circ}, \angle C E G=15^{\circ}$.
Find the height of the box. (Cirrito 9.6, p.307)

2. (NA1.5; CI) If $\log _{3} x=K$, write each of the following in terms of K.
(Cirrito 7.4, p.221)
a. $\log _{3}\left(\frac{x^{5}}{81}\right)$
b. $\log _{3} \sqrt[4]{9 x^{8}}$
c. $4^{\log _{2} 5}$
3. (SP4.6, SP4.7; CI) As a result of a certain random experiment, the events A and/or B may occur. These events are independent and $P(A)=0.5$ and $P(B)=0.2$.
(Cirrito 15.2, p.508; Oxford 3.2, p.68)
a. Find the probability that both A and B occur.
b. Find the probability that either A or B occurs.
c. Find the probability that neither A nor B occurs.
d. Visualize these probabilities using a Venn Diagram and a tree diagram.
e. Find the probability that A happens, given that B has occurred. What do you notice?
f. Find the probability that B happens, given that A has occurred. What do you notice?
g. Let X denote the random variable which counts how many of the two events occur at a given time. Thus, for example, $X=0$ if neither A nor B occur
i. What would $X=1$ mean?
ii. Find $P(X=x)$ for $x=0,1,2$.
iii. Tabulate your results from ii.

x	0	1	2
$\mathrm{P}(X=x)$			

4. (NA1.7, F2.9; CI) Consider the system of equations $\left(5^{x}\right)\left(25^{2 y}\right)=1$, and $\left(3^{5 x}\right)\left(9^{y}\right)=\frac{1}{9}$.
(Cirrito 7.1.2, p.200)
a. Show that this system of equations implies that $x+4 y=0$ and $5 x+2 y=-2$.
b. Hence, solve the system of equations.
5. (GT3.3; CI) During the summer months, a reservoir supplies water to a city based upon the water demand modelled by the function $D(t)=120+60 \sin \left(\frac{\pi}{90} t\right), 0 \leq t \leq 90$, where t measures the number of days from the start of summer, which lasts for 90 days.
(Cirrito 10.5, p.361)
a. Sketch the graph of $D(t)$.
b. What are the maximum and minimum demands made by the community over this period?
c. Evaluate and interpret $D(30)$.

However, the weather next summer will be significantly different than this year, so Mayor Santowski has modified the new water demand function to now be $N(t)=1.5 D(t)+20$.
d. Explain what this new function means and how it impacts your answers for the maximum and minimum demands for the next year.
6. (F2.5, F2.9; CI) Given the function $f(x)=\log _{3}(x)$ for $x>0$.
(Cirrito 5.3.4, Cirrito 6.1, 6.2; p.131,167,177)
a. State the domain, range, asymptote(s) and intercepts for f and sketch this function.
b. (CA) Find the equation of the line that is tangent to $f(x)$ at $x=5$. What is the significance of the slope of the tangent line?
c. Let $h(x)=9-x$. Determine the equations for $(f \circ h)(x)$ and $(h \circ f)(x)$ and sketch both composite functions. Explain how the new functions relate to transformations of $f(x)$.
d. Let $k(x)=9 x$. Determine the equations for $(f \circ k)(x)$ and $(k \circ f)(x)$ and sketch both composite functions. Explain how the new functions relate to transformations of $f(x)$.
7. (NA1.7; CI) Simplify the following, leaving your final answer using only positive exponents. (Cirrito 7.1, p.197)
a. $\frac{(-2)^{3} \times 2^{-3}}{\left(x^{-1}\right)^{2} \times x^{3}}$
b. $\frac{(-a)^{3} \times a^{-4}}{\left(b^{-2}\right)^{-2} b^{-5}}$
c. $\frac{(x-1)^{-3}}{(x+1)^{-1}\left(x^{2}-1\right)^{2}}$
d. $\frac{y\left(x^{2}\right)^{-1}+x^{-1}}{x+y}$
8. (NA1.9; CI) Expand the following binomial expressions:
(Cirrito 4.1, p.95)
a. $(p+q)^{6}$
b. $(x-2 y)^{6}$
c. $\left(x^{2}-2 y\right)^{7}$
d. $\left(2 w+\frac{1}{w}\right)^{7}$

