1. (GT3.4; CA) The diagram shows a running track. The perimeter of the inside line is 400 meters and the length of each straight section is 100 meters.
(Cirrito 9.7, p309)

a. Find the radius of each of the semi-circular parts of the inner track.
b. If the width of the land shown is 1 meter, find the perimeter of the outer boundary of the lane.
2. (F2.2, F2.10; CI) Given the function $f(x)=x^{2}+2 x,\{x \in R \mid x \geq-1\}$,
(Cirrito 5.4, p.148)
a. Find the inverse function, $f^{-1}(x)$.
b. Consider the function $x+2 y-12=0$, determine the intersection between this line and $f^{-1}(x)$.
3. (F2.3, F2.11; CI) Given the function $f(x)=\cos (x),-2 \pi \leq x \leq 2 \pi$,
(Cirrito 6.1, 6.2; p.167,177)
a. Sketch f and label three points on the graph.

The function $h(x)$ is defined as $h(x)=4 f\left(\frac{1}{2}\left(x-\frac{\pi}{4}\right)\right)$.
b. State the domain and range, the x - and y-intercepts of $h(x)$ and sketch $h(x)$.
c. Evaluate $h^{-1}(-4)$.
4. (NA1.1; CI) The sum of the first 8 terms of a geometric series is 17 times the sum of its first 4 terms. Find the common ratio. (Cirrito 8.2.4, p.264)
5. (NA1.5; CI) If $\log a=-5, \log b=3$ and $\log c=4$, evaluate each expression:
(Cirrito 7.4, p.221)
a. $\log \left(\frac{a b^{3}}{100}\right)$
b. $\log \left(a^{2} b \sqrt{c^{3}}\right)$
c. $3^{b \log _{3} a}$
6. (F2.5; CI) Given the function $g(x)=2 e^{-x}-1$;
(Cirrito 5.3.3, p.131)
a. State the transformations that were applied to $y=e^{x}$.
b. Find the asymptote(s) and intercept(s) of g and sketch.
c. Find the equation of the inverse of $g(x)$ and sketch $g^{-1}(x)$.
d. (CA) Find the equation of the line that is tangent to $f(x)$ at $x=-\ln 2$. What is the significance of the slope of the tangent line?
7. (GT3.6; CI) Let $\sin (\theta)=\frac{\sqrt{5}}{3}$, where θ is acute.
(Cirrito 10.2, p.327)
a. Find $\cos (\theta)$.
b. Given the fact that $\cos (2 \theta)=2 \cos ^{2} \theta-1$, determine the value of $\cos (2 \theta)$.
8. (GT3.5; CA) Given $\triangle \mathrm{ABC}$ wherein side $b=24 \mathrm{~cm}, \angle \mathrm{BAC}=47^{\circ}$ and $\angle \mathrm{ABC}=83^{\circ}$.
(Cirrito 9.5.1, p.290)
a. Solve $\triangle \mathrm{ABC}$.
b. Find the altitude of $\triangle \mathrm{ABC}$, using side a as the "base" of the triangle.

