1. (SP4.2; CA) Roeland has prepared a frequency table distribution for a data set shown in the table below. (Oxford 8.3, p.260)

| $\boldsymbol{x}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| frequency | 32 | 20 | 41 | 16 |

a. Find the mean and median of this data set.
b. For the frequency row, re-express each frequency as a relative frequency (or rather as a probability). Find the mean and median now. What observations do you make about the mean and median and the total relative frequency now?
2. (GT3.8; CA) A Ferris wheel with diameter 122 metres rotates clockwise at a constant speed. The wheel completes 2.4 rotations every hour. The bottom of the wheel is 13 metres above the ground. A seat starts at the bottom of the wheel.
(Cirrito 10.5, p.361)
a. Find the maximum height above the ground of the seat.
b. After $\boldsymbol{t}$ minutes, the height $h$ metres above the ground of the seat is given by $h(t)=M+a \cos (b t)$.
i. Show that the period of $h(t)$ is 25 minutes.
ii. Write down the exact value of $b$.
c. Find the value of $a$ and of $M$.
d. Sketch the graph of $h(t)$, for $0 \leq t \leq 50$.
e. In one rotation of the wheel, find the probability that a randomly selected seat is at least 105 metres above the ground.

3. ( $\mathbf{F 2 . 6} \mathbf{6} \mathbf{C I}$ ) Let $g$ be a quadratic function such that $g(0)=5$. The line $x=2$ is the axis of symmetry of $g$. (Cirrito 2.4.2, p44)
a. Find $g(4)$.
b. The function $g$ can be expressed in the form $g(x)=a(x-h)^{2}+3$.
i. Write down the value of $h$.
ii. Find the value of $a$.
iii. Find the equation of the inverse of $g$.
4. (F2.9; CI) Solve the following;
(Cirrito 7.4, p.221)
a. $\log _{2}(x+7)+\log _{2} x=3$
b. $\log _{2} x+\log _{2} x^{3}=4$
c. $\log _{10}(x+7)+\log _{10}(x-2)=1$
5. (F2.8; CI) Consider the function $f(x)=\frac{4 x-6}{x+3}$.
(Cirrito 5.4, p.148)
a. Write down the equation of the asymptote(s) of this function
b. Determine the intercepts of this function
c. The point $P(3,1)$ is on the graph of $f(x)$. Let $h(x)=-2 f\left(\frac{1}{3} x\right)+1$. Determine the coordinates of the point $P^{\prime}$ on $h(x)$ which corresponds to the point $P$.
6. (F2.6; CI) Given the function $q(x)=2 x^{2}-3 x+2$, determine:
(Cirrito 2.4.1, p.41)
a. The number of $x$-intercepts of $q(x)$.
b. The value of $K$ in the linear function $f(x)=-x+K$ such that the equation $q(x)=f(x)$ has only one solution.
c. Interpret the meaning of the scenario in $\mathrm{Q}(\mathrm{b})$.
7. (F2.9, CI) Given the functions $f(x)=e^{2 x+1}$ and $g(x)=\ln \sqrt{x}$;
(Cirrito 5.3.3, p.131; 5.3.4, p.138)
a. Sketch each function.
b. Show that $(g \circ f)(x)=x+1 / 2$. Hence, are the 2 functions inverses of each other?
c. Find the equation for $f^{-1}(x)$ and $g^{-1}(x)$.
8. (SP 4.2, CA) Here are the results of a survey on hours of homework done over the weekend by IB year 1 students. Students were asked to round their studying time to the nearest hour.
(Cirrito 16.1, p527)

| Number of hours studied | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of students | 4 | 12 | 8 | 3 | 2 | 1 |
| Relative frequency |  |  |  | 0.10 |  |  |

a. Explain why this data table shows an example of a discrete data set
b. Find the mean and standard deviation of the number of hours studied.
c. Prepare a frequency histogram of the results.
d. How probable is it that a randomly selected student studied 2 hours?
e. How probable is it that a randomly selected student studied at most 3 hours?
f. How probable is it that a randomly selected student studied either 2 or 3 hours?
g. Complete the row wherein you calculate the relative frequencies.
h. We will now define the variable $X$ as the number of hours studied. Determine:
i. $\quad P(X=3)$
ii. $P(X \geq 3)$
iii. $P(X=3 \mid X \geq 3)$
iv. $\mathrm{P}(2 \leq \mathrm{X} \leq 4)$

