1. **(SP4.2; CA)** Roeland has prepared a frequency table distribution for a data set shown in the table below. *(Oxford 8.3, p.260)*

x	1	2	3	4
frequency	32	20	41	16

- a. Find the mean and median of this data set.
- b. For the frequency row, re-express each frequency as a relative frequency (or rather as a probability). Find the mean and median now. What observations do you make about the mean and median and the total relative frequency now?
- 2. **(GT3.8; CA)** A Ferris wheel with diameter 122 metres rotates clockwise at a constant speed. The wheel completes 2.4 rotations every hour. The bottom of the wheel is 13 metres above the ground. A seat starts at the bottom of the wheel.

(Cirrito 10.5, p.361)

- a. Find the maximum height above the ground of the seat.
- b. After *t* minutes, the height *h* metres above the ground of the seat is given by
 - $h(t) = M + a \cos(bt).$
 - i. Show that the period of h(t) is 25 minutes.
 - ii. Write down the **exact** value of *b*.
- c. Find the value of *a* and of *M*.
- d. Sketch the graph of h(t), for $0 \le t \le 50$.
- e. In one rotation of the wheel, find the probability that a randomly selected seat is at least 105 metres above the ground.

- (F2.6; CI) Let g be a quadratic function such that g(0) = 5. The line x = 2 is the axis of symmetry of g.
 (*Cirrito 2.4.2, p44*)
 - a. Find g(4).
 - b. The function g can be expressed in the form $g(x) = a(x h)^2 + 3$.
 - i. Write down the value of *h*.
 - ii. Find the value of *a*.
 - iii. Find the equation of the inverse of *g*.

- 4. (F2.9; CI) Solve the following;
 - (Cirrito 7.4, p.221)

a. $log_2(x+7) + log_2x = 3$ b. $log_2x + log_2x^3 = 4$ c. $log_{10}(x+7) + log_{10}(x-2) = 1$

5. **(F2.8; CI)** Consider the function $f(x) = \frac{4x-6}{x+3}$.

(Cirrito 5.4, p.148)

- a. Write down the equation of the asymptote(s) of this function
- b. Determine the intercepts of this function
- c. The point P(3, 1) is on the graph of f(x). Let $h(x) = -2f(\frac{1}{3}x) + 1$. Determine the coordinates of the point P' on h(x) which corresponds to the point P.
- 6. **(F2.6; CI)** Given the function $q(x) = 2x^2 3x + 2$, determine: (*Cirrito 2.4.1, p.41*)
 - a. The number of x-intercepts of q(x).
 - b. The value of K in the linear function f(x) = -x + K such that the equation q(x) = f(x) has only one solution.
 - c. Interpret the meaning of the scenario in Q(b).
- 7. **(F2.9, CI)** Given the functions $f(x) = e^{2x+1}$ and $g(x) = \ln \sqrt{x}$;
 - (Cirrito 5.3.3, p.131; 5.3.4, p.138)
 - a. Sketch each function.
 - b. Show that $(g \circ f)(x) = x + \frac{1}{2}$. Hence, are the 2 functions inverses of each other?
 - c. Find the equation for $f^{-1}(x)$ and $g^{-1}(x)$.
- (SP 4.2, CA) Here are the results of a survey on hours of homework done over the weekend by IB year 1 students. Students were asked to round their studying time to the nearest hour.
 (Cirrito 16.1, p527)

Number of hours studied	0	1	2	3	4	5
Number of students	4	12	8	3	2	1
Relative frequency				0.10		

- a. Explain why this data table shows an example of a discrete data set
- b. Find the mean and standard deviation of the number of hours studied.
- c. Prepare a frequency histogram of the results.
- d. How probable is it that a randomly selected student studied 2 hours?
- e. How probable is it that a randomly selected student studied at most 3 hours?
- f. How probable is it that a randomly selected student studied either 2 or 3 hours?
- g. Complete the row wherein you calculate the relative frequencies.
- h. We will now define the variable *X* as the number of hours studied. Determine:
 - i. P(X = 3) ii. $P(X \ge 3)$ iii. $P(X = 3 | X \ge 3)$ iv. $P(2 \le X \le 4)$