1. (T1.9-N) (CA) For the following binomial distributions find,
(Cirrito 4.1, p95)
a. The coefficient of the x^{6} term in the expansion of $(2 x-3)^{9}$.
b. The coefficient of the x^{3} term in the expansion of $(3 x-1)^{7}$.
c. The coefficient of the term independent of x in $\left(4 x^{3}-\frac{2}{x^{2}}\right)^{5}$.
2. ($\mathbf{T} 4.6-\mathbf{R})(\mathbf{C I})$ Given two events, A and B where $\mathrm{P}(A \mid B)=0.30, \mathrm{P}(B \mid A)=0.60$ and $\mathrm{P}(A \cap B)=0.18$
(Cirrito 15.2, p508)
a. Find $P(A)$
b. Are events A and B independent? Why/why not?
c. Find $\mathrm{P}\left(B \cap A^{\prime}\right)$
3. (T3.7-R) (CA) The depth, \boldsymbol{d} meters, of water in a harbour varies with the tides each day. The first high tide occurs at 05:00 am with a depth of 5.8 m . The first low tide occurs at 10:30 am with a depth of 2.6 meters.
(Cirrito 10.5, p361)
a. Find a trigonometric function that models, \boldsymbol{d}, the depth of the water \boldsymbol{t} hours after midnight.
b. Find the depth of the water at 12 noon.
c. A large boat needs at least 3.5 m of water to dock in the harbour. During what times after 12 noon can the boat dock safely?

(Cirrito 15.3.2, p512)
a. Draw a Venn diagram for this problem, given this information (you may have to calculate a few things first however \qquad
b. Hence or otherwise, find the probability of the following events:
i. $A \mid B$
ii. $B \mid A$
iii. $A \mid B$ ` iv. \(A^{\prime} \mid B^{`}\)
c. Are the events A and B dependent or independent? Explain why/why not.
4. (T1.3, T1.8-R) (CA) Given the sequence 45, $-30,20,-\frac{40}{3}, \ldots$.
(Cirrito 8.2.4, p263)
a. Find the 8th term
b. Find the sum of the first 8 terms
c. Find the sum of an infinite number of terms of this sequence
5. ($\mathbf{T 2 . 3}, \mathbf{T 2 . 4}, \mathbf{T 2 . 9}, \mathbf{T 2 . 1 1 - R}$)(CI) Determine the equation(s) of the asymptotes as well as the x - and y-intercept(s) and then sketch the functions. State the transformations that have been applied to the "parent" function for each question.
(Cirrito 5.3.3, p131; Cirrito 5.3.4, p138)
a. $y(x)=-\ln (x+4)$
b. $y(x)=-e^{-x}+2$
6. ($\mathbf{T 2 . 2 , T 2 . 5 - R}$)(CI) For each pair of functions, state their domains and ranges and then determine the equation for $(f \circ g)(x)$ and also the equation for $(g \circ f)(x)$.
(Cirrito 2.4.2 p44; 5.3.3, p131; C5.3.4, p138)
a. $f(x)=\sqrt{x-1}$ and $g(x)=1+2 x^{2}$
b. $f(x)=e^{x}-1$ and $g(x)=2 \ln (x+1)$
7. (T1.2, T1.3-E) (CA) Omar and Mostafa begin a training program. In the first week, Mostafa will run 10 km , in the second week, he will run 11.5 km and in the third week 13 km and so on, in an arithmetic progression. Omar will run 5 km in the first week and will increase his distance by 20% in each succeeding week.
a. In which week does Omar's weekly distance first exceed Mostafa's?
b. In which week does Omar's total distance first exceed Mostafa's?
