1. (T3.5-R) (CI) The population (in thousands) of a species of butterfly in a nature sanctuary is modelled by the function:

$$
P(t)=3+2 \sin \left(\frac{3 \pi t}{8}\right), 0 \leq t \leq 12
$$

where t is the time in weeks after scientists first started making population estimates.
(Cirrito 10.5, p.361)
a. What is the initial population?
b. What are the largest and smallest populations?
c. When does the population exceed 4,000 butterflies for the first time?
2. ($\mathbf{T 3 . 1} \mathbf{- N}$) (CA) The diagram shows an equilateral triangle $A B C$ with sides of length 6 cm . (Cirrito 9.4, p287; Cirrito 9.7, p309)
P is the midpoint of $A B$.
Q is the midpoint of $A C$.
APQ is a sector of a circle, centre A.
a. Calculate the length of the arc PQ of the sector

b. Calculate the area of the shaded region.

Give your answer correct to 3 significant figures.
3. ($\mathbf{T 3 . 5} \mathbf{- E}$) (CI) Draw the two special right triangles as well as graphs of $y=\sin (x)$ and $y=\cos (x)$. Label the maximums, minimums and intercepts of these two graphs. (Cirrito 10.4, p.351)
a. Solve $\sqrt{2} \cos (x)+1=0$ for $-360^{\circ} \leq x \leq 360^{\circ}$
b. Solve $\sin ^{2}(\theta)-1=0$ for $0 \leq \theta \leq 4 \pi$
4. (SP5.1, SP5.2, SP5.3-R) (CA) A survey is carried out to find the waiting times for 100 customers at a supermarket. The results are summarized in the table below: (Oxford 8.5, p171; Cirrito 13.5, p482)

Waiting Time (sec)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$	$120-140$	$140-160$
Number of customers	5	15	33	21	11	7	5	2

a. Calculate an estimate for the mean waiting time
b. Estimate the value of the standard deviation as well as the variance of the waiting time.
c. Draw a cumulative frequency graph (CFG) using graph paper
d. Use the CFG to estimate the interquartile range.
5. (A1.1-E) (CI) Three successive terms of a sequence are $2 k+2,5 k+1$ and $10 k+2$. Find the value(s) of k if: (Cirrito, 8.2, p252)
a. the sequence is arithmetic;
b. the sequence is geometric.
6. (T3.1-N)(CA) The diagram shows a sector OABC of a circle with centre O . Given that $\mathrm{OA}=\mathrm{OC}=10.4 \mathrm{~cm}$ and angle AOC $=120^{\circ}$. (Cirrito 9.4, p287; Cirrito 9.7, p309)
a. Calculate the length of the arc $A B C$ of the sector. Give your answer correct to 3 significant figures.
b. Calculate the area of the shaded segment $A B C$. Give your answer correct to 3 significant figures.

7. ($\mathbf{A} 1.1-\mathbf{E})(\mathbf{C A})$ Here are two more geometric series: (Cirrito 8.2.4, p263)
i. $\frac{9}{2}+3+2+\frac{4}{3}+\ldots \ldots$
ii. $240-60+15-3.75+\ldots \ldots$
b. For each series,
i. Find the common ratio, r.
ii. Use your calculator to find $\mathrm{S}_{10}, \mathrm{~S}_{15}$ and S_{20}. Record the complete value (no rounding)
c. Do you notice any patterns? Why do you think this is happening?
d. Now use your calculator to evaluate S_{50}. Do you think your calculator is correct? Why or why not?
e. For each series, predict the sum of an infinite number of terms.
8. (A1.2-N, F2.7-E)(CI) Solve $\log _{3}(x-2)+\log _{3}(x+4)=3$ for x. Use your TI-84 to graph and verify. Explain why there is only one solution for x. (Cirrito 7.4, p221)

