1. (CA) When we work with annuities, we use a specific form of the sum of a geometric sequence formula.

- Recall that the general form for the sums of any geometric series is $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}$
- When we are building up the money, we may use the FV equation.
$F V_{\text {annuity }}=C *\left[\frac{(1+i)^{n}-1}{i}\right]$ Where: $\mathrm{C}=$ the payment per period, $\mathrm{i}=$ interest rate per period, and $\mathrm{n}=$ number of periods.
- When we are withdrawing money in retirement, we may use the PV equation
$P V_{\text {annuity due }}=C *\left[\frac{1-(1+i)^{-n}}{i}\right] *(1+i)$ Where $\mathrm{C}=$ the withdrawal per period, $\mathrm{i}=$ interest rate per period, and $n=$ number of periods.

I am going to invest money in an account with 5% p.a. compounded monthly. When I turn 60 I want to retire and start withdrawing \$4,000 per month for 20 years.
a. How much money should I have saved up on the day I retire, in order to fund my 20 years of retirement?
b. I will start putting a fixed amount of money each month into a retirement account which will earn interest of 5% p.a. compounded monthly. I will begin this process at the age of 30 , so I will do this each month for 30 years. How much must I invest each month to achieve this goal?
2. (CA) A pyramid has a square base and a height of 60 m .
a. If the volume of the pyramid is 100,000 cubic meters, what is the length of a side of the base?
b. A sphere has the same volume as the pyramid, what is the surface area of that sphere?
3. (CI) Find the exact value of $2 \log _{3} 27+\log _{3}\left(\frac{1}{3}\right)-\log _{3} \sqrt{3}$
4. (CI) Let $P(C)=0.4, P(D)=0.5, P(C \mid D)=0.6$.
a. Find $P(C \cap D)$.
b. Are C and D mutually exclusive? Give a reason for your answer.
c. Are C and D independent events? Give a reason for your answer
d. Find $P(C \cup D)$
e. Find $P(D \mid C)$
5. (CA) Consider the geometric series $800+200+50+\ldots$
a. Determine the $10^{\text {th }}$ term.
b. Find the value of S_{10}.
c. Find the sum to infinity
6. (CI) Solve on the domain $-360^{\circ} \leq x \leq 360^{\circ}$
a. $\quad 6 \sin (x)-2=1$
b. $\sqrt{3} \tan (x)=1$
c. $2 \cos (x)+\sqrt{3}=0$
7. (CI) For each of the following functions, find the inverse:
a. $\quad f(x)=\frac{3 x+17}{2}$
b. $g(x)=2 x^{3}+3$
c. $\quad h(x)=-\frac{1}{5} x^{2}+1$
8. (CI) Given the function $f(x)=\frac{2 x-5}{x+2} ; x \neq-2$.
a. Write down the equations of the asymptotes
b. Writedown the coordinates of the intercepts with both axes.
c. Sketch the function
d. Determine the equation of $f^{-1}(x)$.

