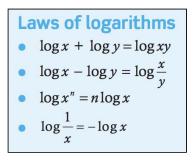

- 1. **(T2.5, 2.7, Cl)** Given the function $f(x) = \frac{5}{x+1} + 2$, *(Cirrito 5.4.5, p144)*
 - a. State the equation(s) of the asymptotes of *f*.
 - b. Show that $\frac{5}{x+1} + 2$ is the same as $\frac{2x+7}{x+1}$.
 - c. Hence, or otherwise, find the equation of $f^{-1}(x)$.
- 2. (T3.1, CA) A sphere has a radius of 10 cm.
 - a. Determine the
 - i. Volume of the sphere to the nearest cm^3 .
 - ii. Surface area of the sphere to the nearest cm^2 .
 - b. Imagine a cylinder with the same diameter and the same "height" as the sphere.
 - i. Write down the radius of the base of the cylinder, and the height of the cylinder.
 - ii. What is the volume of the cylinder?
 - iii. What is the surface area of the cylinder?
- 3. **(T1.9, CA)** Write down the coefficient of the x^3 term in the expansion of $(2x 3y)^7$. *(Oxford, 6.9, p.184)*
- 4. **(T2.2, 2.3, CA)** Given the cubic polynomial defined by P(x) = (x 3)(x + 1)(x + 4), answer the following questions about this function. *(Cirrito 5.2.1, p.115; Cirrito 18.1.3, p.582)*
 - a. Evaluate P(-2).
 - b. Solve P(x) = -2.
 - c. In which domain interval are the function values of P(x) increasing?
 - d. An average rate of change is determined by finding the slope between two points of a function. Find the average rate of change of P(x) between the values of x = 2, and x = 3.


Your calculator has the ability to draw tangent lines on the graphs of your functions (to find the DRAW menu, go to 2nd \Rightarrow PRGM \Rightarrow 5 \Rightarrow now input your *x* value, for example, *x* = -3).

- e. Draw the line that is tangent to P(x) at x = -3 and write down its equation.
- f. At which *x*-values would you expect the tangent lines to be horizontal? Why?
- g. Explain the significance of the slope of the tangent line.

- 5. **(T4.6, CA)** A six-sided die is weighted such that the probability of rolling a 1 is $\frac{6}{10}$. (Oxford, 3.3, p.77)
 - a. If Sarah were to roll this die 15 times, how many times would she expect to get a "1."
 - b. Sarah rolls the die five times.
 - i. What is the probability that she gets at least 4 "1"s?
 - ii. What is the probability that she gets at least 1 "1"?
- 6. **(T4.6, CA)** The two events A and B are such that P(A) = 0.6, P(B) = 0.2, and P(A|B) = 0.1. What is the probability that: *(Oxford, 3.2, p.68)*
 - a. Both of the events occur
 - b. At least one of the events occur,
 - c. Exactly one of the events occur,
 - d. *B* occurs given that *A* occurs.

- 7. **(T1.5, 2.9, Cl)** For each of the following functions, determine the inverse function, $f^{-1}(x)$. *(Oxford, 4.5, p.118)*
 - a. $f(x) = 3e^{2x}$
 - b. $f(x) = 10^{3x}$
 - c. $f(x) = log_2(4x)$
- 8. (T1.5, CI) Express as single logarithms: (Oxford, 4.5, p.118)
 - a. log(5) + log(6)
 - b. log(24) log(2)
 - c. 2log(8) 4log(2)
 - d. $\frac{1}{2}log(49)$
 - e. 3log(x) 2log(y)
 - f. log(x) log(y) log(2)
 - g. log(x) + 2log(y) 3log(xy)

