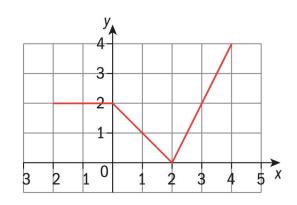

1. **(T3.5, N, CI)** We will now introduce two specific triangles, we call them the *special right triangles*. *(Oxford, 13.1, p.448)*

- a. Keeping the ratio of the side lengths the same, rewrite the special right triangles with hypotenuses of length 1.
- b. Using the triangles from above, determine the following:

sin(30°) or	$sin(\frac{\pi}{6})$	$sin(45^{\circ})$ or $sin(\frac{\pi}{4})$	$sin(60^{\circ})$ or $sin(\frac{\pi}{3})$
<i>cos</i> (30°) or	$\cos(\frac{\pi}{6})$	$cos(45^{\circ})$ or $cos(\frac{\pi}{4})$	$cos(60^{\circ})$ or $cos(\frac{\pi}{3})$
$tan(30^{\circ})$ or	$tan(\frac{\pi}{6})$	$tan(45^{\circ})$ or $tan(\frac{\pi}{4})$	$tan(60^{\circ}) \text{ or } tan(\frac{\pi}{3})$

2. (T3.5, N, CI) Fill out the following table:

(Oxford, 13.1, p.448)


	0° / 0	$90^{\circ} / \frac{\pi}{2}$	180° / π	270° / $\frac{3\pi}{2}$	360° / 2π
Sine					
Cosine					
Tangent					

3. **(T4.4, R, CA)** The heights and weights of a sample of 11 students is listed below. *(Oxford, 10.1, p. 332)*

Height (m) <i>h</i>	1.36	1.47	1.54	1.56	1.59	1.63	1.66	1.67	1.69	1.74	1.81
Weight (kg) <i>w</i>	52	50	67	62	69	74	59	87	77	73	67

- a. Write down the regression line of *w* on *h*.
- b. Use the regression line to estimate the weight of someone whose height is 1.6m.
- c. Write down the correlation coefficient for this regression line.

- 4. **(T2.11, E, Cl)** The graph shows the function f(x), for $-2 \le x \le 4$. *(Oxford, 1.6, p.21)*
 - a. Let h(x) = f(-2x) + 2. In your notes sketch the graph of h(x).
 - b. Let $g(x) = f(\frac{1}{2}x 1)$. The point A(3, 2) on the graph of f(x) is transformed to the point P on the graph of g(x). Find the coordinates of P.

5. **(T2.9, R, CA)** Charlotte decided to go skydiving. After jumping out of the plane her velocity at time t seconds after her parachute opened was $v ms^{-1}$ where

$$v(t) = 9 + 29e^{-0.063t}$$

(Oxford, 4.3, p.109)

- a. Sketch the graph of v against t
- b. What was Charlotte's speed at the instant the parachute opened?
- c. What was her lowest possible speed if she fell from a very great height?
- d. If she actually landed 45 seconds after the parachute opened what was her speed on landing?
- e. How long did it take her to reach half the speed she had when the chute opened?
- (T2.9, R, CA) Two species of spiders inhabit a remote island. The population of species A is 12,000 and is increasing at a rate of 1.25% per month. The population for species B is 50,000 and is decreasing at a rate of 175 spiders each month. When will the population of species A be greater than the population of Species B? (Oxford, 4.3, p.109)
- 7. **(T1.3, E, CA)** A geometric series has a common ratio of 0.4 and sum to infinity of 250. Find the first term. *(Oxford, 6.3, p.167)*
- (T3.2, E, CA) A hiker leaves camp and walks 5km on a bearing of 058°. She stops for a break, then continues walking for another 8km on a bearing of 103°. She stops again before heading straight back to camp. How far must she walk to get back to camp? (Oxford, 11.5, p.386)