1. (T1.3, T2.9-R) (CA) Mr. S has $\$ 12,500$ that he puts into an investment that earns $K \%$ p.a. compounded monthly.
(Cirrito 7.2, p209)
a. Determine the value of his investment if he keeps this investment for 10 years and the interest rate, $K$, is equal to $6 \%$.
b. Interest is now compounded continuously. What would the value of $K$ have to be if MrS wants the investment value to be $\$ 20,000$ in 15 years?
2. (T3.7-R) (CA) The monthly sales, $S$ (in hundreds of litres of milk) is modelled by the function $S(t)=13+5.5 \cos \left(\frac{\pi t}{6}-3\right), t>0$ where $t$ is the time in months with $t=0$ corresponding to January 1st, 2010. (HINT: switch TI-84 to radian mode)
(Cirrito 10.5, p361)
a. Find the minimum and maximum sales during 2011.
b. Find the value of $t$ for which the sales first exceed 1500 litres. Solve algebraically.
c. During which months do the weekly sales exceed 1500 litres? Solve graphically.
3. (T3.4;3.5-E)(CI) By considering an equilateral triangle with side length 2 , find in exact form the values of:
(Cirrito 10.1.1, p315)
a. $\sin 30^{\circ}, \cos 30^{\circ}, \tan 30^{\circ}, \sin 60^{\circ}, \cos 60^{\circ}, \tan 60^{\circ}$.
b. Hence, determine the sin and cos ratios of an angle of $\frac{2 \pi}{3}$

4. (F2.2, F2.6-E)(Cl) The function $y=f(x)$ is defined as $f(x)=2 e^{x}-1$.
(Cirrito 7.1.5, p207; Cirrito 5.3.3, p131)
a. Determine the equation of the horizontal asymptote of $f$.
b. Determine the $x$ - and $y$-intercept(s) of $f$.
c. Sketch $f(x)=2 e^{x}-1$, labeling the features you found in Qa and Qb.
d. Sketch the inverse, $y=f^{-1}(x)$, given your work in Qc.
e. Determine the equation of the inverse of $f$.
5. (T3.4-E) (CI) If $\sin (\theta)=-\frac{3}{5}$ and $\cos (\theta)<0$, find:
(Cirrito 10.1.2, p316)
a. what quadrant the angle $\theta$ is in,
b. the values for $\cos (\theta)$ and $\tan (\theta)$,
c. hence, evaluate $5-\frac{2}{\sin ^{2} \theta}+\frac{2}{\tan ^{2} \theta}$
6. ( $\mathbf{T} 2.6-\mathbf{R})(\mathbf{C I})$ Given the quadratic function $f(x)=4 x^{2}-4 x-15$.
a. Find the zeroes of this function.
b. Find the optimal point of this function.
c. Is this optimal point a maximum or minimum? Show/explain your reasoning.
7. (T2.2, 2.4, 2.9-R)(CA) A biologist is observing the growth of two bacterial populations during an experiment testing a new drug. The first bacterial population, $A(t)$, is modelled by the function $A(t)=$ $a t^{2}+b$, where $t$ is time in hours after the experiment started. This population started with 900 bacteria and the biologist notices that after 5 hours all these bacteria have died.
(Cirrito 7.2, p209)
a. Find the values of $a$ and $b$ in the equation $A(t)=a t^{2}+b$.

The second population, $B(t)$, is modelled by the function $B(t)=\frac{1000}{1+49 e^{-2 t}}$
b. Complete the table of values for $B(t)$ for $0 \leq t \leq 6$.
c. What is the initial number for the population of $B(t)$ ?
d. As time increases, what appears to be the limiting value of the number of bacteria for $B(t)$ ?
e. After what time is the population of $B(t)=500$ (try this one algebraically)
f. Draw the graphs of $A(t)$ and $B(t)$ and state a solution for $A(t)>B(t)$. Interpret your answer.
8. (T4.2-R)(CI) Consider the following data set:
$12,4,9,10,12,13,15,11,12,15,14,8,9,10,12,9,10,16,14,13,12,15,9,10,12$
a. Construct a:
i. A histogram using an interval width of 2
ii. The corresponding frequency polygon to Q a. i.
iii. The cumulative frequency polygon
b. Calculate the mean of the data set.
c. Determine the median and mode and the interquartile range.
d. Construct a box-whisker plot

