Mathematics: analysis and approaches
 Standard level
 Paper 1

Assessment 6

90 minutes
Name: \qquad

Instruction to candidates

- Do not open this examination until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions on the answer sheets provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper
- The maximum mark for this examination is [36 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

PART A - Short Answer Questions

1. Determine the equation of the line tangent to the function $f(x)=x^{4}-2 x^{3}-\frac{1}{2} x^{2}+\frac{1}{2}$ at the point where $x=-1$. [Maximum mark: 6]
2. Determine the equation of the line normal to the function $g(x)=\frac{1}{x}-\sqrt{x}+\frac{x}{4}-1$ at the point where $x=4$. [Maximum mark: 7]
3. Determine the x coordinate(s) at which the function $h(x)=x^{3}-x^{2}-5 x-3$ has horizontal tangent lines. [Maximum mark: 5]
4. Determine the x-coordinate(s) at which the line $x+10 y=20$ is perpendicular to the function $k(x)=x^{3}+6 x^{2}-5 x+2$. [Maximum mark: 7]
5. The point $\mathrm{P}(4,3)$ lies on the graph of the function, f. The diagram included below shows the graph of f^{\prime}, the derivative of f. [Maximum mark: 6]
a. Write down the gradient (slope) of the curve of f at P . [1]
b. Find the equation of the normal to the curve of f at P. [3]
c. Determine the concavity of the graph of f when $4<x<5$. Justify your answer. [2]

PART B - EXTENDED RESPONSE QUESTIONS

6. You are given the following sketch of a function, $y=f(x)$. [Maximum mark:10]

a. This diagram represents the graph of a function, sketch the derivative of $y=f(x)$. [5]

In a second sketch, the graph that was given to you (shown again below) actually represents a diagram of the derivative of another function, $g(x)$.

b. Using this derivative graph, sketch a diagram of the original function, $y=g(x)$. [5]
7. For the equation $f(x)=\frac{1}{2} x^{4}-\frac{26}{3} x^{3}+12 x^{2}+26$ determine: [Maximum marks: 14]
a. the equation of the derivative of $f(x)$. [2]
b. the x-coordinates of the stationary points of f. [5]
c. the intervals of increase and decrease of f. [4]
d. Sketch a graph of f. [3]
8. Let $f(x)=x^{3}-2 x^{2}+a x+6$. Part of the graph of f is shown in the following diagram. The line, L, is tangent to the curve at P. [Maximum marks:11]

a. Find the coordinates of P. [2]
b. i. Find $f^{\prime}(x)$.
ii. Hence, find the equation of L in terms of a. [4]
c. The graph of f has a minimum at the point, Q. The line L passes through Q. Find the value of a. [5]

