We will be looking at the various ways a functions can be modified by things like addition, multiplication, reflection, and other things. These transformations can apply to any function, sinusoidal, polynomial, rational etc...

PART A - Sinusoidal Transformation

- 1. Use <u>DESMOS</u> to graph the function $T(x) = \cos(x)$ in Y_1 on the domain -360° < x < 360°.
 - a. Sketch *T*(*x*) = cos(*x*). Record the *x*-intercepts (zeroes) and **extrema** (maximum and minimum points).
 - b. Then graph f(x) = T(x) + D and add a slider for **D**. Play the slider. Describe the graph specifically how it has been transformed relative to T(x) = cos(x).
 - c. Next, graph f(x) = AT(x) and add a slider for **A**. Play the slider. Describe the graph specifically how it has been transformed relative to T(x) = cos(x). Do any points remain unchanged?
 - d. Next, graph f(x) = T(Bx) and add a slider for **B**, where **B** > 1. Play the slider. Describe the graph specifically how it has been transformed relative to $T(x) = \cos(x)$.
 - e. Next, graph f(x) = T(Bx) and add a slider for **B**, but make 0 < B < 1. Play the slider. Describe the graph specifically how it has been transformed relative to T(x) = cos(x).
 - f. Next, graph f(x) = T(x + C) and add a slider for C, but make 0 < C < 360 in steps of 10. Play the slider. Describe the graph specifically how it has been transformed relative to $T(x) = \cos(x)$.
 - g. Next, graph f(x) = T(x C) and add a slider for C, but make 0 < C < 360 in steps of 10. Play the slider. Describe the graph specifically how it has been transformed relative to $T(x) = \cos(x)$.
 - h. KEY POINT: You have now generated the sinusoidal equation $T(x) = A \cos [B(x - C)] + D$ and you should be able to explain what transformations are implied by the parameters A, B, C and D.

PART B - Combinations of Transformations

For the next phase of this exploration we will work with a fairly unique function. It will help us visualize the impact that various transformations have on a function. This function is:

$$f(x) = \sqrt{9 - x^2}$$

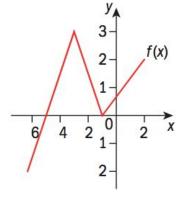
If you graph this function is is the top half of a circle of radius 3, centered at the origin. Graph this function in <u>DESMOS</u>, we will compare each transformation back to this "parent" function.

For each of the following questions, describe the transformation, and then sketch the transformations in your notes (**DO NOT USE technology**). Then use technology to check your work **afterwards**.

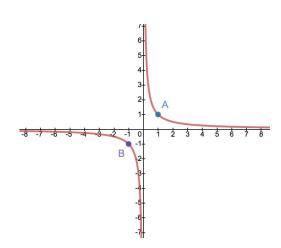
1. $f(x) + 4$	2. $-f(x+4)$	3. $f(2x) - 4$	4. $f(x-2)$
5. $f(-x) + 2$	6. $\frac{1}{3}f(x)$	7. $-3f(x) - 2$	8. $f(2x)$
9. $f(-2x)$	10. $f(\frac{1}{3}x)$	11. $f(3x+6)$	12. $2f(x) + 3$

PART C - Applications

- 1. Copy the graph of f(x). Sketch the graph of each of these functions, and state the domain and range for each.
 - a. $\frac{1}{2}f(x-5)$
 - b. -f(2x) + 3
 - c. 2f(x) + 4 (careful, it's a trap!)
 - d. f(2x-4)
 - e. -f(-x) + 1



- 2. The graph of f(x) is shown. *A* is the point (1, 1), and *B* is the point (-1, -1). Make separate copies of the graph and draw the function after each transformation. On each graph label the new position of *A* as A_1 , and *B* as B_1 .
 - a. 2f(x+1)
 - b. f(x-2) + 1
 - c. 3f(-x)
 - d. 2f(x) 4
 - e. f(x-2) + 3



- 3. Consider the function $g(x) = x^2 6x + 2$
 - a. Sketch the graph of f, for -1 < x < 7
 - b. This function can also be written as $g(x) = (x p)^2 7$. Write down the value of p.
 - c. The graph of h_1 is obtained by reflecting the graph of f in the x-axis, followed by a vertical translation by 6 units. Show that $h_1(x) = -x^2 6x + 8$.
 - d. The graph of h_2 is obtained by vertically stretching f by a scale factor of two followed by a horizontal shift left by 3. Show that $h_2(x) = 2x^2 14$.
 - e. The graph of h_3 is obtained by horizontally stretching f by a scale factor of 2 followed by a Vertical shift down by 5. Show that $h_3(x) = \frac{1}{4}(x-6)^2 12$

