Math SL PROBLEM SET 96

1. (SP5.9) (CA) The weights of a certain animal, w, are normally distributed with a mean of 36.4 kg and a standard deviation of 4.7 kg .
(Cirrito 17.2, p557)
a. Find the probability that when one of these animals is chosen at random it will have a weight that is: (a) 40.0 kg or less; (b) more than 45.0 kg ; (c) between 32.0 kg and 41.0 kg .
b. A researcher wishes to select all animals whose weight is more than $M \mathrm{~kg}$. If $\mathrm{P}(w>M)$ is to be 20%, determine the value of M.
2. (SP5.8) (CI) Let's say you play a game where you roll a fair die and get paid according to your roll. You have to pay $\$ 1$ to play this game. Is it worth it? What do you expect to

Roll	Payout
6	$\$ 4$
5	$\$ 2$
4	$\$ 1$
3	$\$ 0$
2	$\$ 0$
1	$\$ 0$

3. (F2.6; F2.7) (CI) $3^{2 x}+3^{x}-6=0$ can be written as $\left(3^{x}+m\right)\left(3^{x}+n\right)$, where $m, n \in \boldsymbol{Z}$.
a. Find the value of m and the value of n.
(Cirrito 7.1.5, p208)
b. Hence, find the exact solution for the equation $3^{2 x}+3^{x}-6=0$ and explain why there is only one solution.
4. (SP5.8) (CI) Determine the expected value for the following games:
a. You pay $\$ 1$ to roll the dice once and receive the payouts listed on the chart:
b. You pay $\$ 1$ to toss three coins. If you get all heads or all tails, you receive $\$ 5$; if not, you get nothing.

Roll	Payout
6	$\$ 2$
5	$\$ 2$
4	$\$ 1$
3	$\$ 0$
2	$\$ 0$
1	$\$ 1.50$

5. ($\mathbf{F 2 . 6} \mathbf{C} \mathbf{C 6 . 1}, \mathbf{C} 6.5-\mathbf{R}$) (CI) Given the function $g(x)=2 e^{-x}-1$,
(Cirrito 5.3.3, p131)
a. State the transformations that were applied to $y=e^{x}$.
b. Find the asymptote(s) and intercept(s) of g and sketch.
c. Find the equation of the line that is tangent to $f(x)$ at $x=-\ln 2$.
d. Solve for a if $\int_{0}^{q} g(x) d x=\frac{-2}{e^{2}}$.
6. (F2.2; F2.2; CA6.4) (CI) The function f is defined as $f(x)=\sqrt{4-x}$.
a. State the domain and range of f.
b. Sketch the graph of each function on a separate axis:
i. $\quad y=f(2 x)$
ii. $y=f(-x)$
iii. $y=-1 / 2 f(x)+2$
c. Determine the volume of the solid formed when f between $x=0$ and $x=4$ is rotated 360° about the x-axis.
d. Determine $\int f(x) d x$.

Math SL PROBLEM SET 96

7. (SP5.8) (CI) The probability of obtaining a head with a certain biased coin is $\frac{2}{3}$. The coin is tossed three times.
(Cirrito 15.1, p506)
a. Complete the following table;

x	0	1	2	3
$P(X=x)$				

STUCO now makes a fundraiser out of this simple "game". So you pay 4LE to play and if you get 0 heads, you will get 10LE back (representing a "payout" of 6LE). The "payouts" are summarized on the following table:

x	0	1	2	3
$P(X=x)$				
payout	+6	-1	-2	+2

b. What is the expected value of the payouts? Explain why the game is not "fair".
c. Change the payout for getting 3 heads so that the game is now fair.
8. (SP5.9-R) (CA) Reaction times of SL Math students are known to be normally distributed with a mean of 0.76 seconds and a standard deviation of 0.06 seconds. The graph included shows a standardized normal distribution, where the shaded region shows the probability of a randomly selected person having a reaction time between 0.70 seconds and 0.79 seconds.

a. Determine $\mathrm{P}(\mathrm{X} \geq 0.7)$
b. Determine $\mathrm{P}(0.70 \leq \mathrm{X} \leq 0.79)$
c. Determine $\mathrm{P}(0.70 \leq \mathrm{X} \leq 0.79 \mid \mathrm{X} \geq 0.70)$

Three percent of the SL Math students have a reaction time less than Q seconds.
d. Find the value of Q and show this information on the graph of the distribution.

