Math SL PROBLEM SET 92

1. (CA6.4-R)(CI) Evaluate the following integrals:
a. $\int_{2}^{6} e^{\frac{x}{2}+2} d x$
b. $\int_{e}^{e^{2}} \frac{2}{3 x} d x$
c. $\int_{\frac{3 \pi}{4}}^{\pi}(1-\sin (2 x)) d x$
2. (A1.1-R)(CA) Write the following expressions as a sum of terms and then evaluate each sum.
(Cirrito 8.1.3, p252)
a. $\quad \sum_{i=1}^{6}(2 i+3)$
b. $\sum_{i=4}^{9}\left(3 \times 2^{7-i}\right)$
c. $\sum_{i=3}^{7}\left(i^{2}-3\right)$
d. $\sum_{i=2}^{7}\left(\ln \left(e^{i+1}\right)\right)$
3. (T3.5-R)(CI) Solve $2 \sin ^{2}(x)+5 \cos (x)+1=0$ on the domain of $0 \leq x \leq 2 \pi$.
(Cirrito 10.4, p351)
4. (T3.3) (CI) Given that $\tan (x)=-3$ where $\frac{\pi}{2} \leq x \leq \pi$, evaluate:
(Cirrito 10.22, p332)
a. $\sin (2 x)$
b. $\tan (2 x)$
c. Use the appropriate trig identity to find the exact values:
i. $\cos \left(15^{\circ}\right)$
ii. $\sin \left(75^{\circ}\right)$
5. (CA6.5-N)(CI) For the function defined by $y=12 x^{2}(1-x)$;
(Oxford 9.6, p318)
a. Find the area of the region enclosed by the function and the x-axis.
b. This enclosed region is now rotated about the x -axis to form a solid of revolution. Find the volume of this solid.

Math SL PROBLEM SET 92

6. (V4.2, V4.3-R)(CI) A line, L_{1}, passes through the points $\mathrm{A}(2,1,-1)$ and $\mathrm{B}(5,-5,-4)$.
(Cirrito 12.7, p444)
a. Show that $\overrightarrow{A B}=3 i-6 j-3 k$.
b. Write down a vector equation for L 1 in the form of $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$.

The line L_{2} has the vector equation $r=\left(\begin{array}{l}5 \\ 5 \\ 1\end{array}\right)+s\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$.
c. Determine the intersection point of L_{1} and L_{2}.
7. (CA6.6-R)(CI) The velocity, v, in ms^{-1} of a particle moving in a straight line is given by the function $v(t)=t^{2}-11 t+24$, where t is time in seconds.
(Cirrito 22.6, p762)
a. If $s(0)=2$, find the equation for the position function, $s(t)$.
b. Find the displacement of the particle in the first six seconds of travel.
c. Find the total distance travelled in the first six seconds of travel.
8. (SP5.9-R)(CA) The weights, W, of tea bags are normally distributed. If 7% of the bags weigh less than 3.75 g and 12% of the bags weigh more than 4.05 grams, find how many weigh more than 3.95 g .
(Cirrito 17.2, p568)

