Math SL PROBLEM SET 91

1. (SP5.9-R) (CA) A normally distributed variable, X, has a mean of 259 and it is known that $\mathrm{P}(X<261.51)=0.9184$. Find the standard deviation of X.
(Cirrito 17.2, p568)
2. (T3.5-R)(CI) Solve $\cos ^{2}(x)=2 \cos (x)$ on the domain of $-\pi \leq x \leq \pi$.
(Cirrito 10.4, p351)
3. (F2.3; C6.1, 6.5-R)(CI) Given the graph of the function f :
(Cirrito 6.1, 6.2; p167,177)
a. $\quad h(x)$ is defined as $h(x)=2 f(x)+1$. Sketch $h(x)$.
b. $\quad k(x)$ is defined as $k(x)=f[2(x-1)]$. Sketch $k(x)$
c. $\quad m(x)$ is defined as $m(x)=f(-1 / 2 x)+3$. Sketch $m(x)$.
d. Determine the value of $f^{\prime}(1)$ and $\frac{d}{d x} f(3)$.
e. Evaluate $\int_{-5}^{5} f(x) d x$.

4. (CA6.5-N)(CA) Find the exact volumes of revolution that are obtained when the following graphs are rotated about the x-axis:
(Oxford 9.6, p318)
a. $\quad f(x)=\sqrt{2 x}$ between $x=0$ and $x=4$.
b. $\quad g(x)=\frac{3}{x}$ between $x=1$ and $x=3$.
5. (A1.3-R) (CA) In the expansion of $(3 x+1)^{n}$, the coefficient of the term in x^{2} is $135 n$, where $n \in \mathrm{Z}^{+}$. Find the value of n.
(Cirrito 4.1, p95)
6. (SP5.9-R) (CA) A manufacturer does not know the mean and standard deviation of the diameters of ball bearings she is producing. However a sieving system rejects all ball bearings larger than 2.4 cm and those under 1.8 cm in diameter. It is found that 8% of the ball bearings are rejected as being too small and 5.5% are rejected as being too big. What is the mean and standard deviation of the ball bearings produced?
(Cirrito 17.2, p568)

Math SL PROBLEM SET 91

7. (CA6.6-R)(CI/CA) An object starts by moving from a fixed point, O. Its velocity $v \mathrm{~ms}^{-1}$ after t seconds is given by $v(t)=\sqrt{3} \sin (t)+4 \cos (t), t \geq 0$.
(Cirrito 22.6, p764)
a. (CI) Find the velocity at $t=\frac{\pi}{3}$ seconds.
b. (CI) Find the displacement between $\mathrm{t}=0$ and $t=\pi$ seconds.

Let d be the displacement from the fixed point of O when $t=4$.
c. (CA) Write down an integral which represents d and hence calculate the value of d.
d. (CA) Write down an integral which represents the total distance travelled and hence, determine the total distance travelled in those 4 seconds.
8. (CA6.5-E)(CI) For the function $g(x)=\frac{\ln (x)}{x^{2}}$ where $x>0$, determine (if they exist):
(Cirrito 20.2, p649)
a. the x-intercept(s)
b. How do you know that the function has a horizontal asymptote at $y=0$?
c. the coordinate(s) of the stationary point(s)
d. the x-coordinate(s) of the inflection point(s)
e. Sketch the graph of $g(x)$.

