Math SL PROBLEM SET 90

1. (SP5.6-R)(CI) The events A and B are such that $P(A)=0.3, P(B)=0.5$ and $P(A \cup B)=0.55$. Find the probability of:
(Cirrito 15.2, p510)
a. $\mathrm{A} \mid \mathrm{B}$
b. $\mathrm{B} \mid \mathrm{A}$
c. $\mathrm{A} \mid \mathrm{B}{ }^{`}$
d. $\mathrm{A}^{`} \mid \mathrm{B}^{\prime}$
2. ($\mathbf{A 1 . 3}-\mathbf{R})(\mathbf{C A})$ The position vectors of the points A, B and C are given by $\mathrm{OA}=\boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}$, $\mathrm{OB}=\boldsymbol{i}+a \boldsymbol{j}-2 \boldsymbol{k}$ and $\mathrm{OC}=b \boldsymbol{i}+3 \boldsymbol{j}+c \boldsymbol{k}$, where a, b and c are constants. Find:
(Cirrito 12.3, p415)
a. a if OA is perpendicular to OB
b. b and c if O, A and C are collinear
3. (SP5.8-R)(CA) When not busy doing test corrections, Yousef is a darts player in his spare time. The probability that he hits the bullseye with one dart is 0.4 .
(Cirrito 16.3, p548)
a. Find the probability that Yousef hits at most 2 bullseyes with three darts.
b. If the probability of scoring at least one bullseye with n darts is greater than 0.9 , find the least possible value of n.
4. (CA6.4-R)(CI) Evaluate the following integrals. In each case, let the point $(1,1)$ be a point on the original function.
(Oxford 9B, p294)
(i) $y=\int \sqrt[5]{x^{4}} d x$
(ii) $y=\int d x$
(iii) $y=\int\left(3 x^{2}+\frac{2}{x}+\sqrt{x}\right) d x$
(iv) $y=\int\left(t^{2}+\sqrt[4]{t}\right) d t\left(\right.$ v) $y=\int\left(e^{4 x}+\cos (4 x)\right) d x$ and the point is $(0,1)$
5. (C6.6-N)(CA) The part of the curve $f(x)=-x^{2}-x+2$ between $x=1$ and $x=2$ is rotated around the x-axis. Find the volume of this solid of revolution.
(Cirrito 22.7, p768)

Math SL PROBLEM SET 90

6. (SP5.9-R) (CA) A brand of soft drink is sold in "litre" bottles. The amount of liquid in each bottle is a normally distributed random variable with a mean of 1.005 litres and a standard deviation of 0.01 litres.
(Cirrito 17.2, p568)
a. Find the proportion of bottles containing less than 1 litre.
b. If I buy five bottles, find the probability that at least 2 of them contain less than one litre.
c. For a second brand of soft drink, the probability that the bottle contains at most 995 ml of drink is 0.38974 , while the probability that the bottle contains more than 1050 mL is 2.74289%. Find the mean and standard deviation of the amount of liquid in the bottles of the second brand.
7. (SP5.9-R) (CA) The average time it takes high speed trains to travel between Paris and London is 2 hours and 15 minutes with a standard deviation of σ.
(Cirrito 17.2, p557)
a. If the probability that the trip takes 2 hours and 10 minutes is 0.1056 , show that $\sigma=4$.
b. What is the probability that a trip will take more than 2 hours and 17 minutes?
c. What is the interquartile range of a trip on these fast trains?
8. ($\mathbf{C 6 . 6}-\mathbf{E}$) ($\mathbf{C I}$) Jana is on a bus is traveling along a straight road and its velocity-time function for the trip is described by the function $v(t)=2 t(5-t)$, where t is time in minutes and distance is measured in hundreds of meters.
(Cirrito 22.6, p764)
a. The domain of the function is $0<t<8$. Sketch a graph of the function.
b. Find the maximum velocity and at what time the bus attains this velocity.
c. Evaluate $\int_{0}^{8} v(t) d t$ and explain what your answer means.
d. Determine the total distance travelled by the bus.
