Math SL PROBLEM SET 88

1. (A1.2 - R) (CI) Evaluate each of the following without a calculator: (Cirrito 7.4, p221)

a. $\log_3(27^{2007})$ b. $(\log_2 5)(\log_5 12) + (\log_2 7)(\log_7 \frac{8}{3})$ c. $\frac{2^{\log_4 108}}{2^{\log_4 3}}$

- 2. (CA6.6 R) (CI) The velocity, v, in ms⁻¹ of a particle moving in a straight line is given by the function $v(t) = \sin(2t + \pi)$, where t is time in seconds. (Cirrito 22.6, p762)
 - a. If s(0) = 2, find the equation for the position function, s(t).
 - b. Find the displacement of the particle in the first π seconds of travel. Explain the significance of your result.
- 3. <u>(SP5.9 R) (CA)</u> The time taken for a student to complete an exam is normally distributed with a mean of 40 minutes and a standard deviation of 5.5 minutes. (Cirrito 17.2, p567)
 - a. A student is selected at random. How probable is it that the student completes the exam in less than 47 minutes?
 - b. Six students are selected at random. How probable is that at least 4 of them finished the exam in less than 47 minutes?
 - c. The probability that a student takes between q and 47 minutes is 0.5. Find q.
- 4. <u>(SP5.9 E) (CA)</u> Introducing standardized *z* values: Given the following means and standard deviations, determine the *z*-value of the given data points. (Cirrito 17.2, p567)
 - a. If $\mu = 90$ and $\sigma = 10$, find the *z*-value of x = 100. What does this *z*-value MEAN?
 - b. If $\mu = 45$ and $\sigma = 5$, find the *z*-value of x = 40. What does this *z*-value MEAN?
 - c. If $\mu = 120$ and $\sigma = 18$, find the *z*-value of x = 140. What does this *z*-value MEAN?
 - d. If $\mu = 90$ and $\sigma = 10$, find the *z*-value of x = 75. What does this *z*-value MEAN?
- 5. **(F5.9 E) (CA)** Working with Standardized *z* values: Given the following means and/or standard deviations and/or *z*-values and/or *x* data values, find the unknown.

(Cirrito 17.2, p567)

- a. If $\mu = 53$ and $\sigma = 5$ and x = 50, solve for z.
- b. If $\mu = 90$ and x = 81 and z = -0.975, solve for σ .
- c. If $\sigma = 55$ and x = 200 and z = -1.5, solve for μ
- d. If $\mu = 90$ and $\sigma = 20$ and z = 1.88, solve for x.
- 6. (SP5.6 R) (CI) Two independent events, A and B are given where P(A) = k, P(B) = k + 0.3and $P(A \cap B) = 0.18$. (Oxford 3.4, p85)
 - a. Find the value of k. b. Find $P(A \cup B)$ c. Find $P(A^{`}|B^{`})$

Math SL PROBLEM SET 88

- 7. (C6.3 R) (CA) A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction. (Cirrito 21.4, p716)
- 8. <u>(C6.3 R) (CA)</u>A closed tin is to be constructed as shown in the diagram. It is made up of a cylinder of height *h* cm and a radius base *r* cm which is surmounted by a hemispherical cap.

- a. Find an expression in terms of r and h for:
 - i. its volume, $V \text{ cm}^3$.
 - ii. its surface area, $A \text{ cm}^2$.
- b. Given that the volume is πk^3 , k > 0, show that its surface area is given by $SA(r) = \frac{2\pi k^3}{r} + \frac{5\pi}{3}r^2$.
- c. Find the ratio of r : h for A to be a minimum.

9. (CA6.5 - N) (CA) To introduce volumes of rotation:

(Oxford 9.6, p318)

- a. Watch these videos to introduce the idea of "solids of revolution":
 - i. Concept \Rightarrow <u>https://www.youtube.com/watch?v=3oAjcLD34kc</u>
 - ii. Concept: First five minutes of https://www.youtube.com/watch?v=mQj0w8nVyc4
 - iii. And finally here's how to do the math ⇒ https://www.youtube.com/watch?v=FGF0wP6THq4
- b. Try it yourself: To find the volume of the solid formed when the region bounded by the curve g(x) = 6 2x and the *x*-axis between x = 0 and x = 3 is rotated 360° around the *x*-axis:
 - i. Graph the function g(x) = 6 2x, between x = 0 and x = 3.
 - ii. Shade in the region between g(x) and the x-axis, between x = 0 and x = 3.
 - iii. Perform the relevant integration to determine the volume of the 3D solid that would result from the rotation.
 - iv. What 3D shape do you get?
 - v. Determine the volume of this familiar 3D shape by using its volume formula.