- 1. (CA) In a group of 35 students, some take art class (A) and some take music class (M). 5 of these students do not take either class. This information is shown in the following Venn diagram.
 - a. Write down the number of students in the group who take art class.
 - b. One student from the group is chosen at random. Find the probability that
 - i. the student does not take art class;
 - ii. the student takes either art class or music class, but not both

2. (CA) This table shows the hand lengths and the heights of five athletes on a sports team. The relationship between x and y can be modelled by the regression line with equation y = ax + b.

Hand length (x cm)	21.0	21.9	21.0	20.3	20.8
Height (y cm)	178.3	185.0	177.1	169.0	174.6

- a. (i) Find the value of *a* and of *b*.
 - (ii) Write down the correlation coefficient.
- b. Another athlete on this sports team has a hand length of 21.5 cm. Use the regression equation to estimate the height of this athlete.
- 3. (CA) Let $f(x) = \frac{6x-1}{2x+3}, x \neq -\frac{3}{2}$.
 - a. For the graph of *f*,
 - i. find the *y*-intercept;
 - ii. find the equation of the vertical asymptote;
 - iii. find the equation of the horizontal asymptote.
 - b. Hence or otherwise, write down $\lim_{x \to a} \frac{6x-1}{2x+3}$.
- 4. (CA) A particle moves along a straight line so that its velocity, $v \text{ ms}^{-1}$, after *t* seconds is given by $v(t) = 1.4^t 2.7$ for $0 \le t \le 5$.
 - a. Find when the particle is at rest.
 - b. Find the acceleration of the particle when t = 2.
 - c. Find the total distance travelled by the particle.
- 5. (CA) The sum of an infinite geometric sequence is 33.25. The second term of the sequence is 7.98. Find the possible values of r.

- 6. (CA) Consider the expansion of $\left(2x^4 + \frac{x^2}{k}\right)^{12}$; $k \neq 0$. The coefficient of the term in x^{40} is five times the coefficient of the term in x^{38} . Find the value of k.
- 7. (CA) A communication tower, T, produces a signal that can reach cellular phones within a radius of 32 km. A straight road passes through the area covered by the tower's signal. The following diagram shows a line representing the road and a circle representing the area covered by the tower's signal. Point R is on the circumference of the circle and points S and R are on the road. Point S is 38 km from the tower and $\angle RST = 43^{\circ}$.

- a. Let SR = x. Use the cosine rule to show that $x^2 (76 \cos 43^\circ)x + 420 = 0$.
- b. Hence or otherwise, find the total distance along the road where the signal from the tower can reach cellular phones.
- 8. (CA ER) Consider the points A(-3, 4, 2) and B(8, -1, 5).
 - a. (i) Find vector AB.(ii) Find the |AB|.

A line L has vector equation

$$r = \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
 The point C(5, y, 1) lies on line L

- b. (i) Find the value of *y*.
 - (ii) Show that vector AC = 8i 10j k.
- c. Find the angle between vector AB and vector AC.
- d. Find the area of triangle ABC.
- 9. (CI) The following diagram shows a circle with centre A and radius 6 cm. The points B, C, and D lie on the circle, and BAC = 2 radians.
 - a. Find the area of the shaded sector.
 - b. Find the perimeter of the non-shaded sector ABDC.

10. (CI) Let $b = \log_2 a$, where a > 0. Write down each of the following expressions in terms of b.

a. $\log_2 a$ b. $\log_2 8a$ c. $\log_8 a$

11. (CI) Two functions, f and g, are defined in the following table.

- a. Write down the value of f(1).
- b. Find the value of $(g \circ f)(1)$.
- c. Find the value of $g^{-1}(-2)$.

12.	<u>(CI)</u>	In an	arithmetic	sequence,	$u_1 = -5$	and $d = 3$.
-----	-------------	-------	------------	-----------	------------	---------------

- a. Find u_8 .
- b. Find the value of *n* for which $u_n = 67$.

$$a = \begin{pmatrix} 3 \\ 2p \end{pmatrix}$$
 and $b = \begin{pmatrix} p+1 \\ 8 \end{pmatrix}$

13. (CI) Consider the vectors and *b* are parallel.

14. (CI) Let $f(x) = \frac{6-2x}{\sqrt{16+6x-x^2}}$. The following diagram shows part of the graph of *f*. The region **R** is enclosed by the graph of *f*, the *x*-axis, and the *y*-axis. Find the area of **R**.

15. (CI) Given that $sin(x) = \frac{1}{3}$, where $0 \le x \le \frac{\pi}{2}$, find the value of cos(4x).

 x
 -2
 1
 3
 6

 f(x)
 6
 3
 1
 -2

 g(x)
 -7
 -2
 5
 9

. Find the possible values of p for which a

16. (CI - ER) Let $f(x) = x^2 - 4x - 5$.

- a. Find the *x*-intercepts of the graph of *f*.
- b. Find the equation of the axis of symmetry of the graph of f.
- c. The function can be written in the form $f(x) = (x h)^2 + k$.
 - i. Write down the value of h.
 - ii. Find the value of k.

The graph of a second function, g, is obtained by a reflection of the graph of f in the y-axis,

followed by a translation of $\begin{pmatrix} -3\\ 6 \end{pmatrix}$.

d. Find the coordinates of the vertex of the graph of g.

- 17. (CI ER) A bag contains *n* marbles, two of which are blue. Hayley plays a game in which she randomly draws marbles out of the bag, one after another, without replacement. The game ends when Hayley draws a blue marble.
 - a. Find the probability, in terms of *n*, that the game will end on her
 - i. first draw;
 - ii. second draw.
 - b. Let n = 5. Find the probability that the game will end on her
 - i. (i) third draw;
 - ii. (ii) fourth draw.

Hayley plays the game when n = 5. She pays \$20 to play and can earn money back depending on the number of draws it takes to obtain a blue marble. She earns no money back if she obtains a blue marble on her first draw. Let M be the amount of money that she earns back playing the game. This information is shown in the following table.

Number of draws	1	2	3	4
Money earned back (\$M)	0	20	8 <i>k</i>	12k

- c. Find the value of *k* so that this is a fair game.
- 18. <u>(CI ER)</u> Let $f(x) = x^3 2x^2 + ax + 6$. Part of the graph of *f* is shown in the following diagram. The graph of *f* crosses the *y*-axis at the point P. The line L is tangent to the graph of *f* at P.
 - a. Find the coordinates of P.
 - b. (i) Find f'(x).
 - (ii) Hence, find the equation of L in terms of a. [6]

The graph of f has a local minimum at the point Q. The line L passes through Q.

c. Find the value of *a*.

(November 2018)