Math SL PROBLEM SET 83

1. (CA) In a group of 35 students, some take art class (A) and some take music class (M). 5 of these students do not take either class. This information is shown in the following Venn diagram.
a. Write down the number of students in the group who take art class.
b. One student from the group is chosen at random. Find the probability that
i. the student does not take art class;
ii. the student takes either art class or music class, but not both

2. (CA) This table shows the hand lengths and the heights of five athletes on a sports team. The relationship between x and y can be modelled by the regression line with equation $y=a x+b$.

Hand length $(x \mathrm{~cm})$	21.0	21.9	21.0	20.3	20.8
Height $(y \mathrm{~cm})$	178.3	185.0	177.1	169.0	174.6

a. (i) Find the value of a and of b.
(ii) Write down the correlation coefficient.
b. Another athlete on this sports team has a hand length of 21.5 cm . Use the regression equation to estimate the height of this athlete.
3. (CA) Let $f(x)=\frac{6 x-1}{2 x+3}, x \neq-\frac{3}{2}$.
a. For the graph of f,
i. find the y-intercept;
ii. find the equation of the vertical asymptote;
iii. find the equation of the horizontal asymptote.
b. Hence or otherwise, write down $\lim _{x \rightarrow \infty} \frac{6 x-1}{2 x+3}$.
4. (CA) A particle moves along a straight line so that its velocity, $v \mathrm{~ms}^{-1}$, after t seconds is given by $v(t)=1.4^{t}-2.7$ for $0 \leq t \leq 5$.
a. Find when the particle is at rest.
b. Find the acceleration of the particle when $t=2$.
c. Find the total distance travelled by the particle.
5. (CA) The sum of an infinite geometric sequence is 33.25 . The second term of the sequence is 7.98. Find the possible values of r.

Math SL PROBLEM SET 83

6. (CA) Consider the expansion of $\left(2 x^{4}+\frac{x^{2}}{k}\right)^{12} ; k \neq 0$. The coefficient of the term in x^{40} is five times the coefficient of the term in x^{38}. Find the value of k.
7. (CA) A communication tower, T, produces a signal that can reach cellular phones within a radius of 32 km . A straight road passes through the area covered by the tower's signal. The following diagram shows a line representing the road and a circle representing the area covered by the tower's signal. Point R is on the circumference of the circle and points S and R are on the road. Point S is 38 km from the tower and $\angle \mathrm{RST}=43^{\circ}$.

a. Let $\mathrm{SR}=x$. Use the cosine rule to show that $x^{2}-\left(76 \cos 43^{\circ}\right) x+420=0$.
b. Hence or otherwise, find the total distance along the road where the signal from the tower can reach cellular phones.
8. (CA-ER) Consider the points $\mathrm{A}(-3,4,2)$ and $\mathrm{B}(8,-1,5)$.
a. (i) Find vector $A B$.
(ii) Find the $|\mathrm{AB}|$.

A line L has vector equation $\quad r=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)+t\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$. The point $\mathrm{C}(5, y, 1)$ lies on line L .
b. (i) Find the value of y.
(ii) Show that vector $A C=8 \boldsymbol{i}-10 \boldsymbol{j}-\boldsymbol{k}$.
c. Find the angle between vector AB and vector AC .
d. Find the area of triangle ABC .
9. (CI) The following diagram shows a circle with centre A and radius 6 cm . The points B, C, and D lie on the circle, and $\mathrm{BA} \mathrm{C}=2$ radians.
a. Find the area of the shaded sector.
b. Find the perimeter of the non-shaded sector ABDC.

10. (CI) Let $b=\log _{2} a$, where $a>0$. Write down each of the following expressions in terms of b.
a. $\log _{2} a$
b. $\log _{2} 8 a$
c. $\log _{8} a$

Math SL PROBLEM SET 83

11. (CI) Two functions, f and g, are defined in the following table.
a. Write down the value of $f(1)$.
b. Find the value of $(g \circ f)(1)$.
c. Find the value of $g^{-1}(-2)$.

x	-2	1	3	6
$f(x)$	6	3	1	-2
$g(x)$	-7	-2	5	9

12. (CI) In an arithmetic sequence, $u_{1}=-5$ and $d=3$.
a. Find u_{8}.
b. Find the value of n for which $u_{n}=67$.
13. (CI) Consider the vectors $\boldsymbol{a}=\binom{3}{2 p}$ and $\boldsymbol{b}=\binom{p+1}{8}$. and b are parallel.
14. (CI) Let $f(x)=\frac{6-2 x}{\sqrt{16+6 x-x^{2}}}$. The following diagram shows part of the graph of f. The region \boldsymbol{R} is enclosed by the graph of f, the x-axis, and the y-axis. Find the area of \boldsymbol{R}.
. Find the possible values of p for which a

15. (CI) Given that $\sin (x)=\frac{1}{3}$, where $0 \leq x \leq \frac{\pi}{2}$, find the value of $\cos (4 x)$.
16. (CI-ER) Let $f(x)=x^{2}-4 x-5$.
a. Find the x-intercepts of the graph of f.
b. Find the equation of the axis of symmetry of the graph of f.
c. The function can be written in the form $f(x)=(x-h)^{2}+k$.
i. Write down the value of h.
ii. Find the value of k.

The graph of a second function, g , is obtained by a reflection of the graph of f in the y-axis, followed by a translation of $\binom{-3}{6}$.
d. Find the coordinates of the vertex of the graph of g.

Math SL PROBLEM SET 83

17. (CI-ER) A bag contains n marbles, two of which are blue. Hayley plays a game in which she randomly draws marbles out of the bag, one after another, without replacement. The game ends when Hayley draws a blue marble.
a. Find the probability, in terms of n, that the game will end on her
i. first draw;
ii. second draw.
b. Let $n=5$. Find the probability that the game will end on her
i. (i) third draw;
ii. (ii) fourth draw.

Hayley plays the game when $n=5$. She pays $\$ 20$ to play and can earn money back depending on the number of draws it takes to obtain a blue marble. She earns no money back if she obtains a blue marble on her first draw. Let M be the amount of money that she earns back playing the game. This information is shown in the following table.

Number of draws	1	2	3	4
Money earned back $(\$ \boldsymbol{M})$	0	20	$8 k$	$12 k$

c. Find the value of k so that this is a fair game.
18. (CI-ER) Let $f(x)=x^{3}-2 x^{2}+a x+6$. Part of the graph of f is shown in the following diagram. The graph of f crosses the y-axis at the point P . The line L is tangent to the graph of f at P .
a. Find the coordinates of P.
b. (i) Find $f^{\prime}(x)$.
(ii) Hence, find the equation of L in terms of a. [6]

The graph of f has a local minimum at the point Q . The line L passes through Q .
c. Find the value of a.

