Math SL PROBLEM SET 80

1. (CA6.2-N) (CI) Determine the equation of the line that is tangent to the following curves at the specified points. Confirm using your TI-84.
(Cirrito 20.1, p643)
a. $\quad g(x)=\frac{e^{x}}{x}$ at the point where $x=1 / 2$.
b. $\quad h(x)=x e^{-2 x}+2$ at the point where $h(x)$ crosses the y-axis.
c. $x^{2} y-y=x^{2}-4$ at the point where the function crosses the x-axis.
2. (CA6.4-N) (CI) Evaluate the following integrals. Confirm using your TI-84.
(Oxford 9F, p302)
a. $\int_{0}^{1} x e^{x^{2}} d x$
b. $\int_{0}^{4} \sin (\sqrt{x}) \frac{d x}{\sqrt{x}}$
c. $\int \frac{6 x^{2}}{x^{3}+1} d x$
3. (V4.1-R)(CI) $A B C D$ is a trapezium with $B C$ parallel to $A D$. M is the midpoint of $A D$ and N is the midpoint of $B C$. Given that vector $A B=2 \boldsymbol{a}$, vector $\mathrm{BC}=2 \boldsymbol{z}$ and vector $\mathrm{AD}=6 \boldsymbol{z}$, express vector MN in terms of \boldsymbol{z} and \boldsymbol{a}.
(Oxford 12.4, p424)

 your TI-84
(Cirrito 10.4, p351)
4. (CA6.5-E) (CI) Given $f(x)=\sin (x)$ and $g(x)=\sqrt{3} \cos (x)$ and the domain of $0<x<\frac{3 \pi}{2}$. Confirm using your TI-84.
(Cirrito 22.5, p760)
a. Find the point(s) at which $f(x)$ and $g(x)$ intersect in the given domain.
b. Find the area of the region bounded by f and g.

Math SL PROBLEM SET 80

6. (CA6.3-R) (CI) Given $f(x)=\frac{\sin (x)}{e^{x}}$ on $0 \leq x \leq 2 \pi$. Confirm all answer using your TI-84.
(Cirrito 20.2, p669)
a. Determine the equations for $\frac{d f}{d x}$ and for $\frac{d^{2} f}{d x^{2}}$.
b. Hence, determine where $f(x)$ has stationary points and inflection points.
c. Classify the stationary points, justifying your conclusions using either the first or second derivatives.
d. Sketch $f(x)$.
7. (V4.2, 4.3-R)(CA) Points A, B, and C have position vectors $4 \boldsymbol{i}+2 \boldsymbol{j}, \boldsymbol{i}-3 \boldsymbol{j}$ and $-5 \boldsymbol{i}-5 \boldsymbol{j}$. Let D be a point on the x-axis such that ABCD forms a parallelogram.
(Cirrito 12.7, p444)
a. Find vector BC.
b. Find the position vector of D .
c. Find the angle between vector BD and vector AC .

The line L_{1} passes through A and is parallel to $\boldsymbol{i}+4 \boldsymbol{j}$. The line L_{2} passes through B and is parallel to $2 \boldsymbol{i}+7 \boldsymbol{j}$. A vector equation of L_{1} is $\boldsymbol{r}=(4 \boldsymbol{i}+2 \boldsymbol{j})+\lambda(\boldsymbol{i}+4 \boldsymbol{j})$.
d. Write down a vector equation of L_{2} in the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{q}$.
e. The lines L_{1} and L_{2} intersect at the point P . Find the position vector of P .
8. (CA6.3-E)(CA) The diagram below shows a sketch of the graph of the function $y=\sin \left(\mathrm{e}^{x}\right)$ where $-1<x<2$, and x is in radians. The graph cuts the y-axis at A , and the x-axis at C and D . It has a maximum point at B .
(Cirrito 20.2, p649)
a. Find the coordinates of A.
b. The coordinates of C may be written as $(\ln k, 0)$. Find the exact value of k.
c. Write down the y-coordinate of B. (Hint: CA??)
d. Find $\frac{d y}{d x}$.
e. Hence, show that at B, $x=\ln \frac{\pi}{2}$.
f. Write down the integral which represents the shaded area.
g. Evaluate this integral. (Hint: CA???)

