Math SL PROBLEM SET 79

1. (CA6.2-R) (CI) Differentiate the following:
(Cirrito 19.3, p618)
a. $f(x)=\sqrt{x^{2}+4}$
b. $g(x)=(2 x-1) \cos (2 x)$
c. $h(x)=\frac{x^{2}-1}{x^{2}+1}$
2. (CA6.5-N) (CI) Determine the values of the following, given the graph of $y=g(x)$.
(Cirrito 22.5, p748)
a. i.) $\int_{-1}^{3} g(x) d x$
ii.) $\int_{3}^{8} g(x) d x$
iii.) $\int_{-1}^{12} g(x) d x$
b. i.) $\int_{-1}^{-1}(g(x)+2) d x$
ii.) $\int_{-1}^{3} 2 g(x) d x$
iii.) $\int_{-1}^{-1}-g(x) d x$
c. i.) $g^{\prime}(0)=$?
ii.) $g^{\prime}(3)=$?
iii.) $g^{\prime}(10)=$?

3. (T.3.2-R)(CI) Solve the following trigonometric equations on the domain of $-2 \pi \leq x \leq 2 \pi$.
(Cirrito 9.1.2, p273)
a. $2 \cos (x)+\sqrt{3}=0$
b. $2 \sin (2 x)-\sqrt{2}=0$
c. $3 \tan ^{2}(x)-1=0$
4. (CA6.4-N) (CI) Evaluate the following integrals:
(Oxford 9F, p302)
a. $\int_{-1}^{1} x^{2} \sqrt{x^{3}+1} d x$
b. $\int_{-\pi}^{\pi} \cos (x) \sqrt{\sin (x)} d x$
c. $\int \frac{e^{x}}{1+e^{2 x}} d x$

Math SL PROBLEM SET 79

5. (CA6.5-E) (CI) Given the two functions of $f(x)=\sin (2 x)$ and $g(x)=\sin (x)$ and limiting ourselves to the interval of $0<x<\pi$:
(Cirrito 22.5, p760)
a. Sketch the two functions on this interval.
b. Find the area of the region between the two curves on this interval.
6. (CA6.3-E) (CI) Let $g(x)=\frac{\ln (x)}{x^{2}}$ for $x>0$. Use the quotient rule to show that $g^{\prime}(x)=\frac{1-2 \ln (x)}{x^{3}}$. The graph of g has a maximum point at A. Find the x-coordinate of A .
(Cirrito 20.2, p649)
7. ($\mathbf{T} 3.5-\mathbf{R})(\mathbf{C A})$ Given triangle ABC , side $a=12.1 \mathrm{~cm}$ and side $b=16.8 \mathrm{~cm}$ and the angle at vertex A measures 23°. Determine the measure of side c and the angle at vertex C.
(Cirrito 9.5.2, p294)
8. (T3.5, C6.1, C6.2, C6.5-E)(CI) You are given a graph of the function, $g(x)=A \sin (K x)+D$.
(Cirrito 10.3, p337; 20.2, p649; 22.5, 748)

a. Find the values of A, K and D. Show/explain your work.
b. Write a cosine equation for $g(x)$.
c. The first two positive zeroes of $\mathrm{g}(\mathrm{x})$ are $x_{1}=a$ and $x_{2}=b$. Find the values of a and b.
d. Determine the equation of the line that is tangent to $g(x)$ at x_{1}.
e. Evaluate $\int_{a}^{b} g(x) d x$
